Solve for I (complex solution)
\left\{\begin{matrix}I=\frac{fx-x\epsilon +\epsilon ^{2}}{f}\text{, }&f\neq 0\text{ and }\epsilon \neq 0\\I\in \mathrm{C}\text{, }&\epsilon =x\text{ and }f=0\text{ and }x\neq 0\end{matrix}\right.
Solve for f (complex solution)
\left\{\begin{matrix}f=\frac{\epsilon \left(\epsilon -x\right)}{I-x}\text{, }&x\neq I\text{ and }\epsilon \neq 0\\f\in \mathrm{C}\text{, }&\epsilon =I\text{ and }x=I\text{ and }I\neq 0\end{matrix}\right.
Solve for I
\left\{\begin{matrix}I=\frac{fx-x\epsilon +\epsilon ^{2}}{f}\text{, }&f\neq 0\text{ and }\epsilon \neq 0\\I\in \mathrm{R}\text{, }&\epsilon =x\text{ and }f=0\text{ and }x\neq 0\end{matrix}\right.
Solve for f
\left\{\begin{matrix}f=\frac{\epsilon \left(\epsilon -x\right)}{I-x}\text{, }&x\neq I\text{ and }\epsilon \neq 0\\f\in \mathrm{R}\text{, }&\epsilon =I\text{ and }x=I\text{ and }I\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
\epsilon \epsilon -x\epsilon =\left(I-x\right)f
Multiply both sides of the equation by \epsilon .
\epsilon ^{2}-x\epsilon =\left(I-x\right)f
Multiply \epsilon and \epsilon to get \epsilon ^{2}.
\epsilon ^{2}-x\epsilon =If-xf
Use the distributive property to multiply I-x by f.
If-xf=\epsilon ^{2}-x\epsilon
Swap sides so that all variable terms are on the left hand side.
If=\epsilon ^{2}-x\epsilon +xf
Add xf to both sides.
fI=fx-x\epsilon +\epsilon ^{2}
The equation is in standard form.
\frac{fI}{f}=\frac{fx-x\epsilon +\epsilon ^{2}}{f}
Divide both sides by f.
I=\frac{fx-x\epsilon +\epsilon ^{2}}{f}
Dividing by f undoes the multiplication by f.
\epsilon \epsilon -x\epsilon =\left(I-x\right)f
Multiply both sides of the equation by \epsilon .
\epsilon ^{2}-x\epsilon =\left(I-x\right)f
Multiply \epsilon and \epsilon to get \epsilon ^{2}.
\epsilon ^{2}-x\epsilon =If-xf
Use the distributive property to multiply I-x by f.
If-xf=\epsilon ^{2}-x\epsilon
Swap sides so that all variable terms are on the left hand side.
\left(I-x\right)f=\epsilon ^{2}-x\epsilon
Combine all terms containing f.
\frac{\left(I-x\right)f}{I-x}=\frac{\epsilon \left(\epsilon -x\right)}{I-x}
Divide both sides by I-x.
f=\frac{\epsilon \left(\epsilon -x\right)}{I-x}
Dividing by I-x undoes the multiplication by I-x.
\epsilon \epsilon -x\epsilon =\left(I-x\right)f
Multiply both sides of the equation by \epsilon .
\epsilon ^{2}-x\epsilon =\left(I-x\right)f
Multiply \epsilon and \epsilon to get \epsilon ^{2}.
\epsilon ^{2}-x\epsilon =If-xf
Use the distributive property to multiply I-x by f.
If-xf=\epsilon ^{2}-x\epsilon
Swap sides so that all variable terms are on the left hand side.
If=\epsilon ^{2}-x\epsilon +xf
Add xf to both sides.
fI=fx-x\epsilon +\epsilon ^{2}
The equation is in standard form.
\frac{fI}{f}=\frac{fx-x\epsilon +\epsilon ^{2}}{f}
Divide both sides by f.
I=\frac{fx-x\epsilon +\epsilon ^{2}}{f}
Dividing by f undoes the multiplication by f.
\epsilon \epsilon -x\epsilon =\left(I-x\right)f
Multiply both sides of the equation by \epsilon .
\epsilon ^{2}-x\epsilon =\left(I-x\right)f
Multiply \epsilon and \epsilon to get \epsilon ^{2}.
\epsilon ^{2}-x\epsilon =If-xf
Use the distributive property to multiply I-x by f.
If-xf=\epsilon ^{2}-x\epsilon
Swap sides so that all variable terms are on the left hand side.
\left(I-x\right)f=\epsilon ^{2}-x\epsilon
Combine all terms containing f.
\frac{\left(I-x\right)f}{I-x}=\frac{\epsilon \left(\epsilon -x\right)}{I-x}
Divide both sides by I-x.
f=\frac{\epsilon \left(\epsilon -x\right)}{I-x}
Dividing by I-x undoes the multiplication by I-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}