Evaluate
\theta +\frac{28}{3}
Factor
\frac{3\theta +28}{3}
Graph
Share
Copied to clipboard
\theta -\frac{7\times 2\sqrt{2}}{-6}\sqrt{8}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\theta -\frac{14\sqrt{2}}{-6}\sqrt{8}
Multiply 7 and 2 to get 14.
\theta -\left(-\frac{7}{3}\sqrt{2}\sqrt{8}\right)
Divide 14\sqrt{2} by -6 to get -\frac{7}{3}\sqrt{2}.
\theta -\left(-\frac{7}{3}\sqrt{2}\times 2\sqrt{2}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\theta -\frac{-7\times 2}{3}\sqrt{2}\sqrt{2}
Express -\frac{7}{3}\times 2 as a single fraction.
\theta -\frac{-14}{3}\sqrt{2}\sqrt{2}
Multiply -7 and 2 to get -14.
\theta -\left(-\frac{14}{3}\sqrt{2}\sqrt{2}\right)
Fraction \frac{-14}{3} can be rewritten as -\frac{14}{3} by extracting the negative sign.
\theta -\left(-\frac{14}{3}\times 2\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
\theta -\frac{-14\times 2}{3}
Express -\frac{14}{3}\times 2 as a single fraction.
\theta -\frac{-28}{3}
Multiply -14 and 2 to get -28.
\theta -\left(-\frac{28}{3}\right)
Fraction \frac{-28}{3} can be rewritten as -\frac{28}{3} by extracting the negative sign.
\theta +\frac{28}{3}
The opposite of -\frac{28}{3} is \frac{28}{3}.
\frac{6\theta +28\left(\sqrt{2}\right)^{2}}{6}
Factor out \frac{1}{6}.
2\left(3\theta +28\right)
Consider 6\theta +56. Factor out 2.
\frac{3\theta +28}{3}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}