Solve for x
x=\frac{\theta }{2\arctan(\frac{41}{8v_{0}})}
v_{0}\neq 0
Solve for v_0
\left\{\begin{matrix}v_{0}=\frac{41\cot(\frac{\theta }{2x})}{8}\text{, }&\nexists n_{2}\in \mathrm{Z}\text{ : }\theta =2\pi n_{2}x+\pi x\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =2\pi n_{1}x\text{ and }\theta >-\pi x\text{ and }\theta <\pi x\text{ and }x>0\\v_{0}\neq 0\text{, }&\theta =0\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
2x\arctan(\frac{41}{8v_{0}})=\theta
Swap sides so that all variable terms are on the left hand side.
2\arctan(\frac{41}{8v_{0}})x=\theta
The equation is in standard form.
\frac{2\arctan(\frac{41}{8v_{0}})x}{2\arctan(\frac{41}{8v_{0}})}=\frac{\theta }{2\arctan(\frac{41}{8v_{0}})}
Divide both sides by 2\arctan(\frac{41}{8}v_{0}^{-1}).
x=\frac{\theta }{2\arctan(\frac{41}{8v_{0}})}
Dividing by 2\arctan(\frac{41}{8}v_{0}^{-1}) undoes the multiplication by 2\arctan(\frac{41}{8}v_{0}^{-1}).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}