Solve for x
x=\frac{\theta }{2\arctan(\frac{1}{200})}
Solve for θ
\theta =2\arctan(\frac{1}{200})x
Graph
Share
Copied to clipboard
\theta =2x\arctan(\frac{1}{200})
Reduce the fraction \frac{4}{800} to lowest terms by extracting and canceling out 4.
2x\arctan(\frac{1}{200})=\theta
Swap sides so that all variable terms are on the left hand side.
2\arctan(\frac{1}{200})x=\theta
The equation is in standard form.
\frac{2\arctan(\frac{1}{200})x}{2\arctan(\frac{1}{200})}=\frac{\theta }{2\arctan(\frac{1}{200})}
Divide both sides by 2\arctan(\frac{1}{200}).
x=\frac{\theta }{2\arctan(\frac{1}{200})}
Dividing by 2\arctan(\frac{1}{200}) undoes the multiplication by 2\arctan(\frac{1}{200}).
\theta =2x\arctan(\frac{1}{200})
Reduce the fraction \frac{4}{800} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}