\theta = \operatorname { arct } ( \frac { 2 - ( - 0,6 ) } { 1 + ( 2 ) \cdot ( - 0,6 ) } )
Solve for a
\left\{\begin{matrix}a=-\frac{\theta }{13crt}\text{, }&t\neq 0\text{ and }c\neq 0\text{ and }r\neq 0\\a\in \mathrm{R}\text{, }&\left(t=0\text{ or }c=0\text{ or }r=0\right)\text{ and }\theta =0\end{matrix}\right.
Solve for c
\left\{\begin{matrix}c=-\frac{\theta }{13art}\text{, }&t\neq 0\text{ and }r\neq 0\text{ and }a\neq 0\\c\in \mathrm{R}\text{, }&\left(t=0\text{ or }r=0\text{ or }a=0\right)\text{ and }\theta =0\end{matrix}\right.
Share
Copied to clipboard
\theta =arct\times \frac{2+0,6}{1+2\left(-0,6\right)}
The opposite of -0,6 is 0,6.
\theta =arct\times \frac{2,6}{1+2\left(-0,6\right)}
Add 2 and 0,6 to get 2,6.
\theta =arct\times \frac{2,6}{1-1,2}
Multiply 2 and -0,6 to get -1,2.
\theta =arct\times \frac{2,6}{-0,2}
Subtract 1,2 from 1 to get -0,2.
\theta =arct\times \frac{26}{-2}
Expand \frac{2,6}{-0,2} by multiplying both numerator and the denominator by 10.
\theta =arct\left(-13\right)
Divide 26 by -2 to get -13.
arct\left(-13\right)=\theta
Swap sides so that all variable terms are on the left hand side.
\left(-13crt\right)a=\theta
The equation is in standard form.
\frac{\left(-13crt\right)a}{-13crt}=\frac{\theta }{-13crt}
Divide both sides by -13rct.
a=\frac{\theta }{-13crt}
Dividing by -13rct undoes the multiplication by -13rct.
a=-\frac{\theta }{13crt}
Divide \theta by -13rct.
\theta =arct\times \frac{2+0,6}{1+2\left(-0,6\right)}
The opposite of -0,6 is 0,6.
\theta =arct\times \frac{2,6}{1+2\left(-0,6\right)}
Add 2 and 0,6 to get 2,6.
\theta =arct\times \frac{2,6}{1-1,2}
Multiply 2 and -0,6 to get -1,2.
\theta =arct\times \frac{2,6}{-0,2}
Subtract 1,2 from 1 to get -0,2.
\theta =arct\times \frac{26}{-2}
Expand \frac{2,6}{-0,2} by multiplying both numerator and the denominator by 10.
\theta =arct\left(-13\right)
Divide 26 by -2 to get -13.
arct\left(-13\right)=\theta
Swap sides so that all variable terms are on the left hand side.
\left(-13art\right)c=\theta
The equation is in standard form.
\frac{\left(-13art\right)c}{-13art}=\frac{\theta }{-13art}
Divide both sides by -13art.
c=\frac{\theta }{-13art}
Dividing by -13art undoes the multiplication by -13art.
c=-\frac{\theta }{13art}
Divide \theta by -13art.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}