Skip to main content
Solve for g (complex solution)
Tick mark Image
Solve for g
Tick mark Image
Graph

Similar Problems from Web Search

Share

gx+1=\tan(2x)
Swap sides so that all variable terms are on the left hand side.
gx=\tan(2x)-1
Subtract 1 from both sides.
xg=\tan(2x)-1
The equation is in standard form.
\frac{xg}{x}=\frac{\left(-1-i\right)e^{2ix}+\left(-1+i\right)e^{-2ix}}{2\cos(2x)x}
Divide both sides by x.
g=\frac{\left(-1-i\right)e^{2ix}+\left(-1+i\right)e^{-2ix}}{2\cos(2x)x}
Dividing by x undoes the multiplication by x.
g=\frac{\left(-1-i\right)e^{2ix}+\left(-1+i\right)e^{-2ix}}{2x\cos(2x)}
Divide \frac{\left(-1-i\right)e^{2ix}+\left(-1+i\right)e^{-2ix}}{2\cos(2x)} by x.
gx+1=\tan(2x)
Swap sides so that all variable terms are on the left hand side.
gx=\tan(2x)-1
Subtract 1 from both sides.
xg=\tan(2x)-1
The equation is in standard form.
\frac{xg}{x}=\frac{\sin(2x)-\cos(2x)}{\cos(2x)x}
Divide both sides by x.
g=\frac{\sin(2x)-\cos(2x)}{\cos(2x)x}
Dividing by x undoes the multiplication by x.
g=\frac{\sin(2x)-\cos(2x)}{x\cos(2x)}
Divide \frac{\sin(2x)-\cos(2x)}{\cos(2x)} by x.