Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{2e^{\frac{\pi i-12ix}{4}}\left(i-ie^{\frac{4ix+\pi i}{2}}\right)}{e^{\frac{4ix+\pi i}{4}}+e^{\frac{-12ix+\pi i}{4}}+e^{\frac{-4ix+3i\pi }{4}}+e^{\frac{-20ix+3i\pi }{4}}}\text{, }&-\frac{1}{e^{ix+\frac{\pi i}{4}}}-\frac{1}{e^{-3ix+\frac{\pi i}{4}}}-e^{ix+\frac{\pi i}{4}}-e^{-3ix+\frac{\pi i}{4}}\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}+\frac{\pi }{4}\\a\in \mathrm{C}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }x=\pi n_{2}+\frac{3\pi }{4}\text{ and }-\frac{1}{e^{ix+\frac{\pi i}{4}}}-\frac{1}{e^{-3ix+\frac{\pi i}{4}}}-e^{ix+\frac{\pi i}{4}}-e^{-3ix+\frac{\pi i}{4}}=0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}+\frac{\pi }{4}\end{matrix}\right.
Solve for a
a=\frac{1}{\cos(2x)}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\frac{\pi n_{1}}{2}+\frac{\pi }{4}
Solve for x
x=\frac{-\arccos(\frac{1}{a})+2\pi n_{1}}{2}\text{, }n_{1}\in \mathrm{Z}
x=\frac{\arccos(\frac{1}{a})+2\pi n_{2}}{2}\text{, }n_{2}\in \mathrm{Z}\text{, }|a|\geq 1
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}