Verify
false
Share
Copied to clipboard
1.6003345290410507 = \frac{1 + 2 \cdot 0.554309051452769}{1 - 0.554309051452769}
Evaluate trigonometric functions in the problem
1.6003345290410507=\frac{1+1.108618102905538}{1-0.554309051452769}
Multiply 2 and 0.554309051452769 to get 1.108618102905538.
1.6003345290410507=\frac{2.108618102905538}{1-0.554309051452769}
Add 1 and 1.108618102905538 to get 2.108618102905538.
1.6003345290410507=\frac{2.108618102905538}{0.445690948547231}
Subtract 0.554309051452769 from 1 to get 0.445690948547231.
1.6003345290410507=\frac{2108618102905538}{445690948547231}
Expand \frac{2.108618102905538}{0.445690948547231} by multiplying both numerator and the denominator by 1000000000000000.
\frac{16003345290410507}{10000000000000000}=\frac{2108618102905538}{445690948547231}
Convert decimal number 1.6003345290410507 to fraction \frac{16003345290410507}{10000000000}. Reduce the fraction \frac{16003345290410507}{10000000000} to lowest terms by extracting and canceling out 1.
\frac{7132546142411920820607268156117}{4456909485472310000000000000000}=\frac{21086181029055380000000000000000}{4456909485472310000000000000000}
Least common multiple of 10000000000000000 and 445690948547231 is 4456909485472310000000000000000. Convert \frac{16003345290410507}{10000000000000000} and \frac{2108618102905538}{445690948547231} to fractions with denominator 4456909485472310000000000000000.
\text{false}
Compare \frac{7132546142411920820607268156117}{4456909485472310000000000000000} and \frac{21086181029055380000000000000000}{4456909485472310000000000000000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}