Solve for x (complex solution)
x=-\frac{\sqrt{3\left(\left(3-i\right)e^{2i\theta }+\left(3+i\right)e^{-2i\theta }+6\right)}-6\cos(\theta )}{6\cos(\theta )}
x=\frac{\sqrt{3}\left(\sqrt{\left(3-i\right)e^{2i\theta }+\left(3+i\right)e^{-2i\theta }+6}+2\sqrt{3}\cos(\theta )\right)}{6\cos(\theta )}\text{, }\nexists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}+\frac{\pi }{2}
Solve for x
x=\frac{\sqrt{3}\left(-\frac{\sqrt{\cos(\theta )\left(\sin(\theta )+3\cos(\theta )\right)}}{\cos(\theta )}+\sqrt{3}\right)}{3}
x=\frac{\sqrt{3}\left(\frac{\sqrt{\cos(\theta )\left(\sin(\theta )+3\cos(\theta )\right)}}{\cos(\theta )}+\sqrt{3}\right)}{3}\text{, }\exists n_{1}\in \mathrm{Z}\text{ : }\left(\theta \geq \pi n_{1}-\arcsin(\frac{3\sqrt{10}}{10})+\pi \text{ and }\theta <\frac{\pi \left(2n_{1}+3\right)}{2}\right)
Solve for θ
\theta =\pi +2n_{9}\pi +\left(-1\right)arcSin(6\left(36x^{2}+\left(-36\right)x^{3}+9x^{4}+1\right)^{-\frac{1}{2}}x+\left(-3\right)\left(36x^{2}+\left(-36\right)x^{3}+9x^{4}+1\right)^{-\frac{1}{2}}x^{2})\text{, }n_{9}\in \mathrm{Z}\text{, }\exists n_{42}\in \mathrm{Z}\text{ : }\left(\left(n_{9}>\left(-\frac{1}{4}\right)\left(\pi +\left(-2\right)arcSin(3x\left(2+\left(-1\right)x\right)\left(36x^{2}+\left(-36\right)x^{3}+9x^{4}+1\right)^{-\frac{1}{2}})+\left(-2\right)\pi n_{42}\right)\pi ^{-1}\text{ and }36x^{2}+\left(-36\right)x^{3}+9x^{4}+1>0\text{ and }not(3|x||2+\left(-1\right)x|\left(36x^{2}+\left(-36\right)x^{3}+9x^{4}+1\right)^{-\frac{1}{2}}>1)\right)\text{ and }\pi +2n_{9}\pi +\left(-1\right)arcSin(6\left(36x^{2}+\left(-36\right)x^{3}+9x^{4}+1\right)^{-\frac{1}{2}}x+\left(-3\right)\left(36x^{2}+\left(-36\right)x^{3}+9x^{4}+1\right)^{-\frac{1}{2}}x^{2})<\pi \left(n_{42}+\frac{3}{2}\right)\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\pi +2n_{9}\pi +\left(-1\right)arcSin(6\left(36x^{2}+\left(-36\right)x^{3}+9x^{4}+1\right)^{-\frac{1}{2}}x+\left(-3\right)\left(36x^{2}+\left(-36\right)x^{3}+9x^{4}+1\right)^{-\frac{1}{2}}x^{2})=\frac{1}{2}\pi +\pi n_{1}
\theta =\left(-1\right)\left(arcSin(3x\left(2+\left(-1\right)x\right)\left(36x^{2}+\left(-36\right)x^{3}+9x^{4}+1\right)^{-\frac{1}{2}})+\left(-2\right)\pi n_{22}\right)\text{, }n_{22}\in \mathrm{Z}\text{, }\nexists n_{1}\in \mathrm{Z}\text{ : }\left(-1\right)\left(arcSin(3x\left(2+\left(-1\right)x\right)\left(36x^{2}+\left(-36\right)x^{3}+9x^{4}+1\right)^{-\frac{1}{2}})+\left(-2\right)\pi n_{22}\right)=\frac{1}{2}\pi +\pi n_{1}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\left(-1\right)\left(arcSin(3x\left(2+\left(-1\right)x\right)\left(36x^{2}+\left(-36\right)x^{3}+9x^{4}+1\right)^{-\frac{1}{2}})+\left(-2\right)\pi n_{22}\right)=\frac{1}{2}\pi +\pi n_{1}
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}