Solve for x
\left\{\begin{matrix}x=0\text{, }&z\geq 0\\x\in \mathrm{R}\text{, }&z=\pi ^{2}\end{matrix}\right.
Solve for z
\left\{\begin{matrix}\\z=\pi ^{2}\text{, }&\text{unconditionally}\\z\geq 0\text{, }&x=0\end{matrix}\right.
Share
Copied to clipboard
\sqrt{z}x-\pi x=0
Subtract \pi x from both sides.
\left(\sqrt{z}-\pi \right)x=0
Combine all terms containing x.
x=0
Divide 0 by \sqrt{z}-\pi .
\frac{x\sqrt{z}}{x}=\frac{\pi x}{x}
Divide both sides by x.
\sqrt{z}=\frac{\pi x}{x}
Dividing by x undoes the multiplication by x.
\sqrt{z}=\pi
Divide \pi x by x.
z=\pi ^{2}
Square both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}