Solve for y
y=49
Graph
Share
Copied to clipboard
\sqrt{y}=105-2y
Subtract 2y from both sides of the equation.
\left(\sqrt{y}\right)^{2}=\left(105-2y\right)^{2}
Square both sides of the equation.
y=\left(105-2y\right)^{2}
Calculate \sqrt{y} to the power of 2 and get y.
y=11025-420y+4y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(105-2y\right)^{2}.
y-11025=-420y+4y^{2}
Subtract 11025 from both sides.
y-11025+420y=4y^{2}
Add 420y to both sides.
421y-11025=4y^{2}
Combine y and 420y to get 421y.
421y-11025-4y^{2}=0
Subtract 4y^{2} from both sides.
-4y^{2}+421y-11025=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-421±\sqrt{421^{2}-4\left(-4\right)\left(-11025\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 421 for b, and -11025 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-421±\sqrt{177241-4\left(-4\right)\left(-11025\right)}}{2\left(-4\right)}
Square 421.
y=\frac{-421±\sqrt{177241+16\left(-11025\right)}}{2\left(-4\right)}
Multiply -4 times -4.
y=\frac{-421±\sqrt{177241-176400}}{2\left(-4\right)}
Multiply 16 times -11025.
y=\frac{-421±\sqrt{841}}{2\left(-4\right)}
Add 177241 to -176400.
y=\frac{-421±29}{2\left(-4\right)}
Take the square root of 841.
y=\frac{-421±29}{-8}
Multiply 2 times -4.
y=-\frac{392}{-8}
Now solve the equation y=\frac{-421±29}{-8} when ± is plus. Add -421 to 29.
y=49
Divide -392 by -8.
y=-\frac{450}{-8}
Now solve the equation y=\frac{-421±29}{-8} when ± is minus. Subtract 29 from -421.
y=\frac{225}{4}
Reduce the fraction \frac{-450}{-8} to lowest terms by extracting and canceling out 2.
y=49 y=\frac{225}{4}
The equation is now solved.
\sqrt{49}+2\times 49=105
Substitute 49 for y in the equation \sqrt{y}+2y=105.
105=105
Simplify. The value y=49 satisfies the equation.
\sqrt{\frac{225}{4}}+2\times \frac{225}{4}=105
Substitute \frac{225}{4} for y in the equation \sqrt{y}+2y=105.
120=105
Simplify. The value y=\frac{225}{4} does not satisfy the equation.
y=49
Equation \sqrt{y}=105-2y has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}