Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x-5}\right)^{2}=\left(2\sqrt{x}\right)^{2}
Square both sides of the equation.
x-5=\left(2\sqrt{x}\right)^{2}
Calculate \sqrt{x-5} to the power of 2 and get x-5.
x-5=2^{2}\left(\sqrt{x}\right)^{2}
Expand \left(2\sqrt{x}\right)^{2}.
x-5=4\left(\sqrt{x}\right)^{2}
Calculate 2 to the power of 2 and get 4.
x-5=4x
Calculate \sqrt{x} to the power of 2 and get x.
x-5-4x=0
Subtract 4x from both sides.
-3x-5=0
Combine x and -4x to get -3x.
-3x=5
Add 5 to both sides. Anything plus zero gives itself.
x=\frac{5}{-3}
Divide both sides by -3.
x=-\frac{5}{3}
Fraction \frac{5}{-3} can be rewritten as -\frac{5}{3} by extracting the negative sign.
\sqrt{-\frac{5}{3}-5}=2\sqrt{-\frac{5}{3}}
Substitute -\frac{5}{3} for x in the equation \sqrt{x-5}=2\sqrt{x}.
\frac{2}{3}i\times 15^{\frac{1}{2}}=\frac{2}{3}i\times 15^{\frac{1}{2}}
Simplify. The value x=-\frac{5}{3} satisfies the equation.
x=-\frac{5}{3}
Equation \sqrt{x-5}=2\sqrt{x} has a unique solution.