Solve for x
x=\frac{\left(2y-1\right)^{4}+32}{16}
-y^{2}+y-\frac{1}{4}\geq 0
Solve for x (complex solution)
x=\frac{\left(2y-1\right)^{4}+32}{16}
y=\frac{1}{2}\text{ or }arg(y^{2}-y+\frac{1}{4})\geq \pi
Solve for y (complex solution)
y=\sqrt{-\sqrt{x-2}}+\frac{1}{2}
y=-\sqrt{-\sqrt{x-2}}+\frac{1}{2}
Solve for y
y = \frac{1}{2} = 0.5
x=2
Share
Copied to clipboard
\sqrt{x-2}+y^{2}-y^{2}=y-\frac{1}{4}-y^{2}
Subtract y^{2} from both sides of the equation.
\sqrt{x-2}=y-\frac{1}{4}-y^{2}
Subtracting y^{2} from itself leaves 0.
\sqrt{x-2}=-\frac{\left(2y-1\right)^{2}}{4}
Subtract y^{2} from y-\frac{1}{4}.
x-2=\frac{\left(2y-1\right)^{4}}{16}
Square both sides of the equation.
x-2-\left(-2\right)=\frac{\left(2y-1\right)^{4}}{16}-\left(-2\right)
Add 2 to both sides of the equation.
x=\frac{\left(2y-1\right)^{4}}{16}-\left(-2\right)
Subtracting -2 from itself leaves 0.
x=\frac{\left(2y-1\right)^{4}}{16}+2
Subtract -2 from \frac{\left(2y-1\right)^{4}}{16}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}