Solve for x
x=4
Graph
Share
Copied to clipboard
\left(\sqrt{x+5}+\sqrt{x+21}\right)^{2}=\left(\sqrt{x+60}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x+5}\right)^{2}+2\sqrt{x+5}\sqrt{x+21}+\left(\sqrt{x+21}\right)^{2}=\left(\sqrt{x+60}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x+5}+\sqrt{x+21}\right)^{2}.
x+5+2\sqrt{x+5}\sqrt{x+21}+\left(\sqrt{x+21}\right)^{2}=\left(\sqrt{x+60}\right)^{2}
Calculate \sqrt{x+5} to the power of 2 and get x+5.
x+5+2\sqrt{x+5}\sqrt{x+21}+x+21=\left(\sqrt{x+60}\right)^{2}
Calculate \sqrt{x+21} to the power of 2 and get x+21.
2x+5+2\sqrt{x+5}\sqrt{x+21}+21=\left(\sqrt{x+60}\right)^{2}
Combine x and x to get 2x.
2x+26+2\sqrt{x+5}\sqrt{x+21}=\left(\sqrt{x+60}\right)^{2}
Add 5 and 21 to get 26.
2x+26+2\sqrt{x+5}\sqrt{x+21}=x+60
Calculate \sqrt{x+60} to the power of 2 and get x+60.
2\sqrt{x+5}\sqrt{x+21}=x+60-\left(2x+26\right)
Subtract 2x+26 from both sides of the equation.
2\sqrt{x+5}\sqrt{x+21}=x+60-2x-26
To find the opposite of 2x+26, find the opposite of each term.
2\sqrt{x+5}\sqrt{x+21}=-x+60-26
Combine x and -2x to get -x.
2\sqrt{x+5}\sqrt{x+21}=-x+34
Subtract 26 from 60 to get 34.
\left(2\sqrt{x+5}\sqrt{x+21}\right)^{2}=\left(-x+34\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{x+5}\right)^{2}\left(\sqrt{x+21}\right)^{2}=\left(-x+34\right)^{2}
Expand \left(2\sqrt{x+5}\sqrt{x+21}\right)^{2}.
4\left(\sqrt{x+5}\right)^{2}\left(\sqrt{x+21}\right)^{2}=\left(-x+34\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(x+5\right)\left(\sqrt{x+21}\right)^{2}=\left(-x+34\right)^{2}
Calculate \sqrt{x+5} to the power of 2 and get x+5.
4\left(x+5\right)\left(x+21\right)=\left(-x+34\right)^{2}
Calculate \sqrt{x+21} to the power of 2 and get x+21.
\left(4x+20\right)\left(x+21\right)=\left(-x+34\right)^{2}
Use the distributive property to multiply 4 by x+5.
4x^{2}+84x+20x+420=\left(-x+34\right)^{2}
Apply the distributive property by multiplying each term of 4x+20 by each term of x+21.
4x^{2}+104x+420=\left(-x+34\right)^{2}
Combine 84x and 20x to get 104x.
4x^{2}+104x+420=x^{2}-68x+1156
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-x+34\right)^{2}.
4x^{2}+104x+420-x^{2}=-68x+1156
Subtract x^{2} from both sides.
3x^{2}+104x+420=-68x+1156
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+104x+420+68x=1156
Add 68x to both sides.
3x^{2}+172x+420=1156
Combine 104x and 68x to get 172x.
3x^{2}+172x+420-1156=0
Subtract 1156 from both sides.
3x^{2}+172x-736=0
Subtract 1156 from 420 to get -736.
a+b=172 ab=3\left(-736\right)=-2208
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-736. To find a and b, set up a system to be solved.
-1,2208 -2,1104 -3,736 -4,552 -6,368 -8,276 -12,184 -16,138 -23,96 -24,92 -32,69 -46,48
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -2208.
-1+2208=2207 -2+1104=1102 -3+736=733 -4+552=548 -6+368=362 -8+276=268 -12+184=172 -16+138=122 -23+96=73 -24+92=68 -32+69=37 -46+48=2
Calculate the sum for each pair.
a=-12 b=184
The solution is the pair that gives sum 172.
\left(3x^{2}-12x\right)+\left(184x-736\right)
Rewrite 3x^{2}+172x-736 as \left(3x^{2}-12x\right)+\left(184x-736\right).
3x\left(x-4\right)+184\left(x-4\right)
Factor out 3x in the first and 184 in the second group.
\left(x-4\right)\left(3x+184\right)
Factor out common term x-4 by using distributive property.
x=4 x=-\frac{184}{3}
To find equation solutions, solve x-4=0 and 3x+184=0.
\sqrt{-\frac{184}{3}+5}+\sqrt{-\frac{184}{3}+21}=\sqrt{-\frac{184}{3}+60}
Substitute -\frac{184}{3} for x in the equation \sqrt{x+5}+\sqrt{x+21}=\sqrt{x+60}. The expression \sqrt{-\frac{184}{3}+5} is undefined because the radicand cannot be negative.
\sqrt{4+5}+\sqrt{4+21}=\sqrt{4+60}
Substitute 4 for x in the equation \sqrt{x+5}+\sqrt{x+21}=\sqrt{x+60}.
8=8
Simplify. The value x=4 satisfies the equation.
x=4
Equation \sqrt{x+5}+\sqrt{x+21}=\sqrt{x+60} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}