Solve for x
x=11
Graph
Share
Copied to clipboard
\left(\sqrt{x+14}\right)^{2}=\left(16-x\right)^{2}
Square both sides of the equation.
x+14=\left(16-x\right)^{2}
Calculate \sqrt{x+14} to the power of 2 and get x+14.
x+14=256-32x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(16-x\right)^{2}.
x+14-256=-32x+x^{2}
Subtract 256 from both sides.
x-242=-32x+x^{2}
Subtract 256 from 14 to get -242.
x-242+32x=x^{2}
Add 32x to both sides.
33x-242=x^{2}
Combine x and 32x to get 33x.
33x-242-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+33x-242=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=33 ab=-\left(-242\right)=242
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-242. To find a and b, set up a system to be solved.
1,242 2,121 11,22
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 242.
1+242=243 2+121=123 11+22=33
Calculate the sum for each pair.
a=22 b=11
The solution is the pair that gives sum 33.
\left(-x^{2}+22x\right)+\left(11x-242\right)
Rewrite -x^{2}+33x-242 as \left(-x^{2}+22x\right)+\left(11x-242\right).
-x\left(x-22\right)+11\left(x-22\right)
Factor out -x in the first and 11 in the second group.
\left(x-22\right)\left(-x+11\right)
Factor out common term x-22 by using distributive property.
x=22 x=11
To find equation solutions, solve x-22=0 and -x+11=0.
\sqrt{22+14}=16-22
Substitute 22 for x in the equation \sqrt{x+14}=16-x.
6=-6
Simplify. The value x=22 does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{11+14}=16-11
Substitute 11 for x in the equation \sqrt{x+14}=16-x.
5=5
Simplify. The value x=11 satisfies the equation.
x=11
Equation \sqrt{x+14}=16-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}