Solve for x
x=3
Graph
Share
Copied to clipboard
\left(\sqrt{x+1}+\sqrt{x-2}\right)^{2}=\left(\sqrt{x+6}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x+1}\right)^{2}+2\sqrt{x+1}\sqrt{x-2}+\left(\sqrt{x-2}\right)^{2}=\left(\sqrt{x+6}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x+1}+\sqrt{x-2}\right)^{2}.
x+1+2\sqrt{x+1}\sqrt{x-2}+\left(\sqrt{x-2}\right)^{2}=\left(\sqrt{x+6}\right)^{2}
Calculate \sqrt{x+1} to the power of 2 and get x+1.
x+1+2\sqrt{x+1}\sqrt{x-2}+x-2=\left(\sqrt{x+6}\right)^{2}
Calculate \sqrt{x-2} to the power of 2 and get x-2.
2x+1+2\sqrt{x+1}\sqrt{x-2}-2=\left(\sqrt{x+6}\right)^{2}
Combine x and x to get 2x.
2x-1+2\sqrt{x+1}\sqrt{x-2}=\left(\sqrt{x+6}\right)^{2}
Subtract 2 from 1 to get -1.
2x-1+2\sqrt{x+1}\sqrt{x-2}=x+6
Calculate \sqrt{x+6} to the power of 2 and get x+6.
2\sqrt{x+1}\sqrt{x-2}=x+6-\left(2x-1\right)
Subtract 2x-1 from both sides of the equation.
2\sqrt{x+1}\sqrt{x-2}=x+6-2x+1
To find the opposite of 2x-1, find the opposite of each term.
2\sqrt{x+1}\sqrt{x-2}=-x+6+1
Combine x and -2x to get -x.
2\sqrt{x+1}\sqrt{x-2}=-x+7
Add 6 and 1 to get 7.
\left(2\sqrt{x+1}\sqrt{x-2}\right)^{2}=\left(-x+7\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{x+1}\right)^{2}\left(\sqrt{x-2}\right)^{2}=\left(-x+7\right)^{2}
Expand \left(2\sqrt{x+1}\sqrt{x-2}\right)^{2}.
4\left(\sqrt{x+1}\right)^{2}\left(\sqrt{x-2}\right)^{2}=\left(-x+7\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(x+1\right)\left(\sqrt{x-2}\right)^{2}=\left(-x+7\right)^{2}
Calculate \sqrt{x+1} to the power of 2 and get x+1.
4\left(x+1\right)\left(x-2\right)=\left(-x+7\right)^{2}
Calculate \sqrt{x-2} to the power of 2 and get x-2.
\left(4x+4\right)\left(x-2\right)=\left(-x+7\right)^{2}
Use the distributive property to multiply 4 by x+1.
4x^{2}-8x+4x-8=\left(-x+7\right)^{2}
Apply the distributive property by multiplying each term of 4x+4 by each term of x-2.
4x^{2}-4x-8=\left(-x+7\right)^{2}
Combine -8x and 4x to get -4x.
4x^{2}-4x-8=x^{2}-14x+49
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-x+7\right)^{2}.
4x^{2}-4x-8-x^{2}=-14x+49
Subtract x^{2} from both sides.
3x^{2}-4x-8=-14x+49
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}-4x-8+14x=49
Add 14x to both sides.
3x^{2}+10x-8=49
Combine -4x and 14x to get 10x.
3x^{2}+10x-8-49=0
Subtract 49 from both sides.
3x^{2}+10x-57=0
Subtract 49 from -8 to get -57.
a+b=10 ab=3\left(-57\right)=-171
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-57. To find a and b, set up a system to be solved.
-1,171 -3,57 -9,19
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -171.
-1+171=170 -3+57=54 -9+19=10
Calculate the sum for each pair.
a=-9 b=19
The solution is the pair that gives sum 10.
\left(3x^{2}-9x\right)+\left(19x-57\right)
Rewrite 3x^{2}+10x-57 as \left(3x^{2}-9x\right)+\left(19x-57\right).
3x\left(x-3\right)+19\left(x-3\right)
Factor out 3x in the first and 19 in the second group.
\left(x-3\right)\left(3x+19\right)
Factor out common term x-3 by using distributive property.
x=3 x=-\frac{19}{3}
To find equation solutions, solve x-3=0 and 3x+19=0.
\sqrt{-\frac{19}{3}+1}+\sqrt{-\frac{19}{3}-2}=\sqrt{-\frac{19}{3}+6}
Substitute -\frac{19}{3} for x in the equation \sqrt{x+1}+\sqrt{x-2}=\sqrt{x+6}. The expression \sqrt{-\frac{19}{3}+1} is undefined because the radicand cannot be negative.
\sqrt{3+1}+\sqrt{3-2}=\sqrt{3+6}
Substitute 3 for x in the equation \sqrt{x+1}+\sqrt{x-2}=\sqrt{x+6}.
3=3
Simplify. The value x=3 satisfies the equation.
x=3
Equation \sqrt{x+1}+\sqrt{x-2}=\sqrt{x+6} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}