Solve for x
x=1
Graph
Share
Copied to clipboard
\sqrt{x}=1+\sqrt{x-1}
Subtract -\sqrt{x-1} from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(1+\sqrt{x-1}\right)^{2}
Square both sides of the equation.
x=\left(1+\sqrt{x-1}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=1+2\sqrt{x-1}+\left(\sqrt{x-1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{x-1}\right)^{2}.
x=1+2\sqrt{x-1}+x-1
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x=2\sqrt{x-1}+x
Subtract 1 from 1 to get 0.
x-2\sqrt{x-1}=x
Subtract 2\sqrt{x-1} from both sides.
x-2\sqrt{x-1}-x=0
Subtract x from both sides.
-2\sqrt{x-1}=0
Combine x and -x to get 0.
\sqrt{x-1}=0
Divide both sides by -2. Zero divided by any non-zero number gives zero.
x-1=0
Square both sides of the equation.
x-1-\left(-1\right)=-\left(-1\right)
Add 1 to both sides of the equation.
x=-\left(-1\right)
Subtracting -1 from itself leaves 0.
x=1
Subtract -1 from 0.
\sqrt{1}-\sqrt{1-1}=1
Substitute 1 for x in the equation \sqrt{x}-\sqrt{x-1}=1.
1=1
Simplify. The value x=1 satisfies the equation.
x=1
Equation \sqrt{x}=\sqrt{x-1}+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}