Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x}\right)^{2}=\left(x-4\right)^{2}
Square both sides of the equation.
x=\left(x-4\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=x^{2}-8x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x-x^{2}=-8x+16
Subtract x^{2} from both sides.
x-x^{2}+8x=16
Add 8x to both sides.
9x-x^{2}=16
Combine x and 8x to get 9x.
9x-x^{2}-16=0
Subtract 16 from both sides.
-x^{2}+9x-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 9 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
Square 9.
x=\frac{-9±\sqrt{81+4\left(-16\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-9±\sqrt{81-64}}{2\left(-1\right)}
Multiply 4 times -16.
x=\frac{-9±\sqrt{17}}{2\left(-1\right)}
Add 81 to -64.
x=\frac{-9±\sqrt{17}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{17}-9}{-2}
Now solve the equation x=\frac{-9±\sqrt{17}}{-2} when ± is plus. Add -9 to \sqrt{17}.
x=\frac{9-\sqrt{17}}{2}
Divide -9+\sqrt{17} by -2.
x=\frac{-\sqrt{17}-9}{-2}
Now solve the equation x=\frac{-9±\sqrt{17}}{-2} when ± is minus. Subtract \sqrt{17} from -9.
x=\frac{\sqrt{17}+9}{2}
Divide -9-\sqrt{17} by -2.
x=\frac{9-\sqrt{17}}{2} x=\frac{\sqrt{17}+9}{2}
The equation is now solved.
\sqrt{\frac{9-\sqrt{17}}{2}}=\frac{9-\sqrt{17}}{2}-4
Substitute \frac{9-\sqrt{17}}{2} for x in the equation \sqrt{x}=x-4.
-\left(\frac{1}{2}-\frac{1}{2}\times 17^{\frac{1}{2}}\right)=\frac{1}{2}-\frac{1}{2}\times 17^{\frac{1}{2}}
Simplify. The value x=\frac{9-\sqrt{17}}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{\frac{\sqrt{17}+9}{2}}=\frac{\sqrt{17}+9}{2}-4
Substitute \frac{\sqrt{17}+9}{2} for x in the equation \sqrt{x}=x-4.
\frac{1}{2}+\frac{1}{2}\times 17^{\frac{1}{2}}=\frac{1}{2}\times 17^{\frac{1}{2}}+\frac{1}{2}
Simplify. The value x=\frac{\sqrt{17}+9}{2} satisfies the equation.
x=\frac{\sqrt{17}+9}{2}
Equation \sqrt{x}=x-4 has a unique solution.