Solve for x
x = \frac{\sqrt{17} + 9}{2} \approx 6.561552813
Graph
Share
Copied to clipboard
\left(\sqrt{x}\right)^{2}=\left(x-4\right)^{2}
Square both sides of the equation.
x=\left(x-4\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=x^{2}-8x+16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
x-x^{2}=-8x+16
Subtract x^{2} from both sides.
x-x^{2}+8x=16
Add 8x to both sides.
9x-x^{2}=16
Combine x and 8x to get 9x.
9x-x^{2}-16=0
Subtract 16 from both sides.
-x^{2}+9x-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{9^{2}-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 9 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
Square 9.
x=\frac{-9±\sqrt{81+4\left(-16\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-9±\sqrt{81-64}}{2\left(-1\right)}
Multiply 4 times -16.
x=\frac{-9±\sqrt{17}}{2\left(-1\right)}
Add 81 to -64.
x=\frac{-9±\sqrt{17}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{17}-9}{-2}
Now solve the equation x=\frac{-9±\sqrt{17}}{-2} when ± is plus. Add -9 to \sqrt{17}.
x=\frac{9-\sqrt{17}}{2}
Divide -9+\sqrt{17} by -2.
x=\frac{-\sqrt{17}-9}{-2}
Now solve the equation x=\frac{-9±\sqrt{17}}{-2} when ± is minus. Subtract \sqrt{17} from -9.
x=\frac{\sqrt{17}+9}{2}
Divide -9-\sqrt{17} by -2.
x=\frac{9-\sqrt{17}}{2} x=\frac{\sqrt{17}+9}{2}
The equation is now solved.
\sqrt{\frac{9-\sqrt{17}}{2}}=\frac{9-\sqrt{17}}{2}-4
Substitute \frac{9-\sqrt{17}}{2} for x in the equation \sqrt{x}=x-4.
-\left(\frac{1}{2}-\frac{1}{2}\times 17^{\frac{1}{2}}\right)=\frac{1}{2}-\frac{1}{2}\times 17^{\frac{1}{2}}
Simplify. The value x=\frac{9-\sqrt{17}}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{\frac{\sqrt{17}+9}{2}}=\frac{\sqrt{17}+9}{2}-4
Substitute \frac{\sqrt{17}+9}{2} for x in the equation \sqrt{x}=x-4.
\frac{1}{2}+\frac{1}{2}\times 17^{\frac{1}{2}}=\frac{1}{2}\times 17^{\frac{1}{2}}+\frac{1}{2}
Simplify. The value x=\frac{\sqrt{17}+9}{2} satisfies the equation.
x=\frac{\sqrt{17}+9}{2}
Equation \sqrt{x}=x-4 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}