Solve for x (complex solution)
x=\frac{-29+\sqrt{59}i}{50}\approx -0.58+0.153622915i
Graph
Share
Copied to clipboard
\left(\sqrt{x}\right)^{2}=\left(5x+3\right)^{2}
Square both sides of the equation.
x=\left(5x+3\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=25x^{2}+30x+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5x+3\right)^{2}.
x-25x^{2}=30x+9
Subtract 25x^{2} from both sides.
x-25x^{2}-30x=9
Subtract 30x from both sides.
-29x-25x^{2}=9
Combine x and -30x to get -29x.
-29x-25x^{2}-9=0
Subtract 9 from both sides.
-25x^{2}-29x-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-29\right)±\sqrt{\left(-29\right)^{2}-4\left(-25\right)\left(-9\right)}}{2\left(-25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -25 for a, -29 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-29\right)±\sqrt{841-4\left(-25\right)\left(-9\right)}}{2\left(-25\right)}
Square -29.
x=\frac{-\left(-29\right)±\sqrt{841+100\left(-9\right)}}{2\left(-25\right)}
Multiply -4 times -25.
x=\frac{-\left(-29\right)±\sqrt{841-900}}{2\left(-25\right)}
Multiply 100 times -9.
x=\frac{-\left(-29\right)±\sqrt{-59}}{2\left(-25\right)}
Add 841 to -900.
x=\frac{-\left(-29\right)±\sqrt{59}i}{2\left(-25\right)}
Take the square root of -59.
x=\frac{29±\sqrt{59}i}{2\left(-25\right)}
The opposite of -29 is 29.
x=\frac{29±\sqrt{59}i}{-50}
Multiply 2 times -25.
x=\frac{29+\sqrt{59}i}{-50}
Now solve the equation x=\frac{29±\sqrt{59}i}{-50} when ± is plus. Add 29 to i\sqrt{59}.
x=\frac{-\sqrt{59}i-29}{50}
Divide 29+i\sqrt{59} by -50.
x=\frac{-\sqrt{59}i+29}{-50}
Now solve the equation x=\frac{29±\sqrt{59}i}{-50} when ± is minus. Subtract i\sqrt{59} from 29.
x=\frac{-29+\sqrt{59}i}{50}
Divide 29-i\sqrt{59} by -50.
x=\frac{-\sqrt{59}i-29}{50} x=\frac{-29+\sqrt{59}i}{50}
The equation is now solved.
\sqrt{\frac{-\sqrt{59}i-29}{50}}=5\times \frac{-\sqrt{59}i-29}{50}+3
Substitute \frac{-\sqrt{59}i-29}{50} for x in the equation \sqrt{x}=5x+3.
-\left(\frac{1}{10}-\frac{1}{10}i\times 59^{\frac{1}{2}}\right)=-\frac{1}{10}i\times 59^{\frac{1}{2}}+\frac{1}{10}
Simplify. The value x=\frac{-\sqrt{59}i-29}{50} does not satisfy the equation.
\sqrt{\frac{-29+\sqrt{59}i}{50}}=5\times \frac{-29+\sqrt{59}i}{50}+3
Substitute \frac{-29+\sqrt{59}i}{50} for x in the equation \sqrt{x}=5x+3.
\frac{1}{10}+\frac{1}{10}i\times 59^{\frac{1}{2}}=\frac{1}{10}+\frac{1}{10}i\times 59^{\frac{1}{2}}
Simplify. The value x=\frac{-29+\sqrt{59}i}{50} satisfies the equation.
x=\frac{-29+\sqrt{59}i}{50}
Equation \sqrt{x}=5x+3 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}