Solve for x
x = \frac{9}{4} = 2\frac{1}{4} = 2.25
Graph
Share
Copied to clipboard
\sqrt{x}=2-\sqrt{x-2}
Subtract \sqrt{x-2} from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(2-\sqrt{x-2}\right)^{2}
Square both sides of the equation.
x=\left(2-\sqrt{x-2}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=4-4\sqrt{x-2}+\left(\sqrt{x-2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-\sqrt{x-2}\right)^{2}.
x=4-4\sqrt{x-2}+x-2
Calculate \sqrt{x-2} to the power of 2 and get x-2.
x=2-4\sqrt{x-2}+x
Subtract 2 from 4 to get 2.
x+4\sqrt{x-2}=2+x
Add 4\sqrt{x-2} to both sides.
x+4\sqrt{x-2}-x=2
Subtract x from both sides.
4\sqrt{x-2}=2
Combine x and -x to get 0.
\sqrt{x-2}=\frac{2}{4}
Divide both sides by 4.
\sqrt{x-2}=\frac{1}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
x-2=\frac{1}{4}
Square both sides of the equation.
x-2-\left(-2\right)=\frac{1}{4}-\left(-2\right)
Add 2 to both sides of the equation.
x=\frac{1}{4}-\left(-2\right)
Subtracting -2 from itself leaves 0.
x=\frac{9}{4}
Subtract -2 from \frac{1}{4}.
\sqrt{\frac{9}{4}}+\sqrt{\frac{9}{4}-2}=2
Substitute \frac{9}{4} for x in the equation \sqrt{x}+\sqrt{x-2}=2.
2=2
Simplify. The value x=\frac{9}{4} satisfies the equation.
x=\frac{9}{4}
Equation \sqrt{x}=-\sqrt{x-2}+2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}