Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x}=3+\sqrt{10}-\sqrt{1+x}
Subtract \sqrt{1+x} from both sides of the equation.
\sqrt{x}=-\sqrt{x+1}+\sqrt{10}+3
Reorder the terms.
\left(\sqrt{x}\right)^{2}=\left(-\sqrt{x+1}+\sqrt{10}+3\right)^{2}
Square both sides of the equation.
x=\left(-\sqrt{x+1}+\sqrt{10}+3\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=\left(\sqrt{x+1}\right)^{2}-2\sqrt{10}\sqrt{x+1}-6\sqrt{x+1}+\left(\sqrt{10}\right)^{2}+6\sqrt{10}+9
Square -\sqrt{x+1}+\sqrt{10}+3.
x=x+1-2\sqrt{10}\sqrt{x+1}-6\sqrt{x+1}+\left(\sqrt{10}\right)^{2}+6\sqrt{10}+9
Calculate \sqrt{x+1} to the power of 2 and get x+1.
x=x+1-2\sqrt{10}\sqrt{x+1}-6\sqrt{x+1}+10+6\sqrt{10}+9
The square of \sqrt{10} is 10.
x=x+11-2\sqrt{10}\sqrt{x+1}-6\sqrt{x+1}+6\sqrt{10}+9
Add 1 and 10 to get 11.
x=x+20-2\sqrt{10}\sqrt{x+1}-6\sqrt{x+1}+6\sqrt{10}
Add 11 and 9 to get 20.
x-x=20-2\sqrt{10}\sqrt{x+1}-6\sqrt{x+1}+6\sqrt{10}
Subtract x from both sides.
0=20-2\sqrt{10}\sqrt{x+1}-6\sqrt{x+1}+6\sqrt{10}
Combine x and -x to get 0.
20-2\sqrt{10}\sqrt{x+1}-6\sqrt{x+1}+6\sqrt{10}=0
Swap sides so that all variable terms are on the left hand side.
-2\sqrt{10}\sqrt{x+1}-6\sqrt{x+1}+6\sqrt{10}=-20
Subtract 20 from both sides. Anything subtracted from zero gives its negation.
-2\sqrt{10}\sqrt{x+1}-6\sqrt{x+1}=-20-6\sqrt{10}
Subtract 6\sqrt{10} from both sides.
\left(-2\sqrt{10}-6\right)\sqrt{x+1}=-20-6\sqrt{10}
Combine all terms containing x.
\frac{\left(-2\sqrt{10}-6\right)\sqrt{x+1}}{-2\sqrt{10}-6}=\frac{-6\sqrt{10}-20}{-2\sqrt{10}-6}
Divide both sides by -2\sqrt{10}-6.
\sqrt{x+1}=\frac{-6\sqrt{10}-20}{-2\sqrt{10}-6}
Dividing by -2\sqrt{10}-6 undoes the multiplication by -2\sqrt{10}-6.
\sqrt{x+1}=\sqrt{10}
Divide -20-6\sqrt{10} by -2\sqrt{10}-6.
x+1=10
Square both sides of the equation.
x+1-1=10-1
Subtract 1 from both sides of the equation.
x=10-1
Subtracting 1 from itself leaves 0.
x=9
Subtract 1 from 10.
\sqrt{9}+\sqrt{1+9}=3+\sqrt{10}
Substitute 9 for x in the equation \sqrt{x}+\sqrt{1+x}=3+\sqrt{10}.
3+10^{\frac{1}{2}}=3+10^{\frac{1}{2}}
Simplify. The value x=9 satisfies the equation.
x=9
Equation \sqrt{x}=-\sqrt{x+1}+\sqrt{10}+3 has a unique solution.