Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{9x^{2}-2x}\right)^{2}=\left(3x+4\right)^{2}
Square both sides of the equation.
9x^{2}-2x=\left(3x+4\right)^{2}
Calculate \sqrt{9x^{2}-2x} to the power of 2 and get 9x^{2}-2x.
9x^{2}-2x=9x^{2}+24x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+4\right)^{2}.
9x^{2}-2x-9x^{2}=24x+16
Subtract 9x^{2} from both sides.
-2x=24x+16
Combine 9x^{2} and -9x^{2} to get 0.
-2x-24x=16
Subtract 24x from both sides.
-26x=16
Combine -2x and -24x to get -26x.
x=\frac{16}{-26}
Divide both sides by -26.
x=-\frac{8}{13}
Reduce the fraction \frac{16}{-26} to lowest terms by extracting and canceling out 2.
\sqrt{9\left(-\frac{8}{13}\right)^{2}-2\left(-\frac{8}{13}\right)}=3\left(-\frac{8}{13}\right)+4
Substitute -\frac{8}{13} for x in the equation \sqrt{9x^{2}-2x}=3x+4.
\frac{28}{13}=\frac{28}{13}
Simplify. The value x=-\frac{8}{13} satisfies the equation.
x=-\frac{8}{13}
Equation \sqrt{9x^{2}-2x}=3x+4 has a unique solution.