Solve for x
x=-\frac{8}{13}\approx -0.615384615
Graph
Share
Copied to clipboard
\left(\sqrt{9x^{2}-2x}\right)^{2}=\left(3x+4\right)^{2}
Square both sides of the equation.
9x^{2}-2x=\left(3x+4\right)^{2}
Calculate \sqrt{9x^{2}-2x} to the power of 2 and get 9x^{2}-2x.
9x^{2}-2x=9x^{2}+24x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+4\right)^{2}.
9x^{2}-2x-9x^{2}=24x+16
Subtract 9x^{2} from both sides.
-2x=24x+16
Combine 9x^{2} and -9x^{2} to get 0.
-2x-24x=16
Subtract 24x from both sides.
-26x=16
Combine -2x and -24x to get -26x.
x=\frac{16}{-26}
Divide both sides by -26.
x=-\frac{8}{13}
Reduce the fraction \frac{16}{-26} to lowest terms by extracting and canceling out 2.
\sqrt{9\left(-\frac{8}{13}\right)^{2}-2\left(-\frac{8}{13}\right)}=3\left(-\frac{8}{13}\right)+4
Substitute -\frac{8}{13} for x in the equation \sqrt{9x^{2}-2x}=3x+4.
\frac{28}{13}=\frac{28}{13}
Simplify. The value x=-\frac{8}{13} satisfies the equation.
x=-\frac{8}{13}
Equation \sqrt{9x^{2}-2x}=3x+4 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}