Solve for x (complex solution)
x=\frac{-321+\sqrt{4543}i}{13448}\approx -0.02386972+0.00501203i
Graph
Share
Copied to clipboard
\sqrt{7x}=2+82x
Subtract -82x from both sides of the equation.
\left(\sqrt{7x}\right)^{2}=\left(2+82x\right)^{2}
Square both sides of the equation.
7x=\left(2+82x\right)^{2}
Calculate \sqrt{7x} to the power of 2 and get 7x.
7x=4+328x+6724x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+82x\right)^{2}.
7x-4=328x+6724x^{2}
Subtract 4 from both sides.
7x-4-328x=6724x^{2}
Subtract 328x from both sides.
-321x-4=6724x^{2}
Combine 7x and -328x to get -321x.
-321x-4-6724x^{2}=0
Subtract 6724x^{2} from both sides.
-6724x^{2}-321x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-321\right)±\sqrt{\left(-321\right)^{2}-4\left(-6724\right)\left(-4\right)}}{2\left(-6724\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6724 for a, -321 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-321\right)±\sqrt{103041-4\left(-6724\right)\left(-4\right)}}{2\left(-6724\right)}
Square -321.
x=\frac{-\left(-321\right)±\sqrt{103041+26896\left(-4\right)}}{2\left(-6724\right)}
Multiply -4 times -6724.
x=\frac{-\left(-321\right)±\sqrt{103041-107584}}{2\left(-6724\right)}
Multiply 26896 times -4.
x=\frac{-\left(-321\right)±\sqrt{-4543}}{2\left(-6724\right)}
Add 103041 to -107584.
x=\frac{-\left(-321\right)±\sqrt{4543}i}{2\left(-6724\right)}
Take the square root of -4543.
x=\frac{321±\sqrt{4543}i}{2\left(-6724\right)}
The opposite of -321 is 321.
x=\frac{321±\sqrt{4543}i}{-13448}
Multiply 2 times -6724.
x=\frac{321+\sqrt{4543}i}{-13448}
Now solve the equation x=\frac{321±\sqrt{4543}i}{-13448} when ± is plus. Add 321 to i\sqrt{4543}.
x=\frac{-\sqrt{4543}i-321}{13448}
Divide 321+i\sqrt{4543} by -13448.
x=\frac{-\sqrt{4543}i+321}{-13448}
Now solve the equation x=\frac{321±\sqrt{4543}i}{-13448} when ± is minus. Subtract i\sqrt{4543} from 321.
x=\frac{-321+\sqrt{4543}i}{13448}
Divide 321-i\sqrt{4543} by -13448.
x=\frac{-\sqrt{4543}i-321}{13448} x=\frac{-321+\sqrt{4543}i}{13448}
The equation is now solved.
\sqrt{7\times \frac{-\sqrt{4543}i-321}{13448}}-82\times \frac{-\sqrt{4543}i-321}{13448}=2
Substitute \frac{-\sqrt{4543}i-321}{13448} for x in the equation \sqrt{7x}-82x=2.
\frac{157}{82}+\frac{1}{82}i\times 4543^{\frac{1}{2}}=2
Simplify. The value x=\frac{-\sqrt{4543}i-321}{13448} does not satisfy the equation.
\sqrt{7\times \frac{-321+\sqrt{4543}i}{13448}}-82\times \frac{-321+\sqrt{4543}i}{13448}=2
Substitute \frac{-321+\sqrt{4543}i}{13448} for x in the equation \sqrt{7x}-82x=2.
2=2
Simplify. The value x=\frac{-321+\sqrt{4543}i}{13448} satisfies the equation.
x=\frac{-321+\sqrt{4543}i}{13448}
Equation \sqrt{7x}=82x+2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}