Solve for x
x=-1
Graph
Share
Copied to clipboard
\left(\sqrt{7-2x}-\sqrt{5+x}\right)^{2}=\left(\sqrt{4+3x}\right)^{2}
Square both sides of the equation.
\left(\sqrt{7-2x}\right)^{2}-2\sqrt{7-2x}\sqrt{5+x}+\left(\sqrt{5+x}\right)^{2}=\left(\sqrt{4+3x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{7-2x}-\sqrt{5+x}\right)^{2}.
7-2x-2\sqrt{7-2x}\sqrt{5+x}+\left(\sqrt{5+x}\right)^{2}=\left(\sqrt{4+3x}\right)^{2}
Calculate \sqrt{7-2x} to the power of 2 and get 7-2x.
7-2x-2\sqrt{7-2x}\sqrt{5+x}+5+x=\left(\sqrt{4+3x}\right)^{2}
Calculate \sqrt{5+x} to the power of 2 and get 5+x.
12-2x-2\sqrt{7-2x}\sqrt{5+x}+x=\left(\sqrt{4+3x}\right)^{2}
Add 7 and 5 to get 12.
12-x-2\sqrt{7-2x}\sqrt{5+x}=\left(\sqrt{4+3x}\right)^{2}
Combine -2x and x to get -x.
12-x-2\sqrt{7-2x}\sqrt{5+x}=4+3x
Calculate \sqrt{4+3x} to the power of 2 and get 4+3x.
-2\sqrt{7-2x}\sqrt{5+x}=4+3x-\left(12-x\right)
Subtract 12-x from both sides of the equation.
-2\sqrt{7-2x}\sqrt{5+x}=4+3x-12+x
To find the opposite of 12-x, find the opposite of each term.
-2\sqrt{7-2x}\sqrt{5+x}=-8+3x+x
Subtract 12 from 4 to get -8.
-2\sqrt{7-2x}\sqrt{5+x}=-8+4x
Combine 3x and x to get 4x.
\left(-2\sqrt{7-2x}\sqrt{5+x}\right)^{2}=\left(-8+4x\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}\left(\sqrt{7-2x}\right)^{2}\left(\sqrt{5+x}\right)^{2}=\left(-8+4x\right)^{2}
Expand \left(-2\sqrt{7-2x}\sqrt{5+x}\right)^{2}.
4\left(\sqrt{7-2x}\right)^{2}\left(\sqrt{5+x}\right)^{2}=\left(-8+4x\right)^{2}
Calculate -2 to the power of 2 and get 4.
4\left(7-2x\right)\left(\sqrt{5+x}\right)^{2}=\left(-8+4x\right)^{2}
Calculate \sqrt{7-2x} to the power of 2 and get 7-2x.
4\left(7-2x\right)\left(5+x\right)=\left(-8+4x\right)^{2}
Calculate \sqrt{5+x} to the power of 2 and get 5+x.
\left(28-8x\right)\left(5+x\right)=\left(-8+4x\right)^{2}
Use the distributive property to multiply 4 by 7-2x.
140+28x-40x-8x^{2}=\left(-8+4x\right)^{2}
Apply the distributive property by multiplying each term of 28-8x by each term of 5+x.
140-12x-8x^{2}=\left(-8+4x\right)^{2}
Combine 28x and -40x to get -12x.
140-12x-8x^{2}=64-64x+16x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-8+4x\right)^{2}.
140-12x-8x^{2}-64=-64x+16x^{2}
Subtract 64 from both sides.
76-12x-8x^{2}=-64x+16x^{2}
Subtract 64 from 140 to get 76.
76-12x-8x^{2}+64x=16x^{2}
Add 64x to both sides.
76+52x-8x^{2}=16x^{2}
Combine -12x and 64x to get 52x.
76+52x-8x^{2}-16x^{2}=0
Subtract 16x^{2} from both sides.
76+52x-24x^{2}=0
Combine -8x^{2} and -16x^{2} to get -24x^{2}.
19+13x-6x^{2}=0
Divide both sides by 4.
-6x^{2}+13x+19=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=13 ab=-6\times 19=-114
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -6x^{2}+ax+bx+19. To find a and b, set up a system to be solved.
-1,114 -2,57 -3,38 -6,19
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -114.
-1+114=113 -2+57=55 -3+38=35 -6+19=13
Calculate the sum for each pair.
a=19 b=-6
The solution is the pair that gives sum 13.
\left(-6x^{2}+19x\right)+\left(-6x+19\right)
Rewrite -6x^{2}+13x+19 as \left(-6x^{2}+19x\right)+\left(-6x+19\right).
-x\left(6x-19\right)-\left(6x-19\right)
Factor out -x in the first and -1 in the second group.
\left(6x-19\right)\left(-x-1\right)
Factor out common term 6x-19 by using distributive property.
x=\frac{19}{6} x=-1
To find equation solutions, solve 6x-19=0 and -x-1=0.
\sqrt{7-2\times \frac{19}{6}}-\sqrt{5+\frac{19}{6}}=\sqrt{4+3\times \frac{19}{6}}
Substitute \frac{19}{6} for x in the equation \sqrt{7-2x}-\sqrt{5+x}=\sqrt{4+3x}.
-\frac{5}{6}\times 6^{\frac{1}{2}}=\frac{3}{2}\times 6^{\frac{1}{2}}
Simplify. The value x=\frac{19}{6} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{7-2\left(-1\right)}-\sqrt{5-1}=\sqrt{4+3\left(-1\right)}
Substitute -1 for x in the equation \sqrt{7-2x}-\sqrt{5+x}=\sqrt{4+3x}.
1=1
Simplify. The value x=-1 satisfies the equation.
x=-1
Equation -\sqrt{x+5}+\sqrt{7-2x}=\sqrt{3x+4} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}