Solve for x
x=3
Graph
Share
Copied to clipboard
\left(\sqrt{4x-3}+\sqrt{5x+1}\right)^{2}=\left(\sqrt{15x+4}\right)^{2}
Square both sides of the equation.
\left(\sqrt{4x-3}\right)^{2}+2\sqrt{4x-3}\sqrt{5x+1}+\left(\sqrt{5x+1}\right)^{2}=\left(\sqrt{15x+4}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{4x-3}+\sqrt{5x+1}\right)^{2}.
4x-3+2\sqrt{4x-3}\sqrt{5x+1}+\left(\sqrt{5x+1}\right)^{2}=\left(\sqrt{15x+4}\right)^{2}
Calculate \sqrt{4x-3} to the power of 2 and get 4x-3.
4x-3+2\sqrt{4x-3}\sqrt{5x+1}+5x+1=\left(\sqrt{15x+4}\right)^{2}
Calculate \sqrt{5x+1} to the power of 2 and get 5x+1.
9x-3+2\sqrt{4x-3}\sqrt{5x+1}+1=\left(\sqrt{15x+4}\right)^{2}
Combine 4x and 5x to get 9x.
9x-2+2\sqrt{4x-3}\sqrt{5x+1}=\left(\sqrt{15x+4}\right)^{2}
Add -3 and 1 to get -2.
9x-2+2\sqrt{4x-3}\sqrt{5x+1}=15x+4
Calculate \sqrt{15x+4} to the power of 2 and get 15x+4.
2\sqrt{4x-3}\sqrt{5x+1}=15x+4-\left(9x-2\right)
Subtract 9x-2 from both sides of the equation.
2\sqrt{4x-3}\sqrt{5x+1}=15x+4-9x+2
To find the opposite of 9x-2, find the opposite of each term.
2\sqrt{4x-3}\sqrt{5x+1}=6x+4+2
Combine 15x and -9x to get 6x.
2\sqrt{4x-3}\sqrt{5x+1}=6x+6
Add 4 and 2 to get 6.
\left(2\sqrt{4x-3}\sqrt{5x+1}\right)^{2}=\left(6x+6\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{4x-3}\right)^{2}\left(\sqrt{5x+1}\right)^{2}=\left(6x+6\right)^{2}
Expand \left(2\sqrt{4x-3}\sqrt{5x+1}\right)^{2}.
4\left(\sqrt{4x-3}\right)^{2}\left(\sqrt{5x+1}\right)^{2}=\left(6x+6\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(4x-3\right)\left(\sqrt{5x+1}\right)^{2}=\left(6x+6\right)^{2}
Calculate \sqrt{4x-3} to the power of 2 and get 4x-3.
4\left(4x-3\right)\left(5x+1\right)=\left(6x+6\right)^{2}
Calculate \sqrt{5x+1} to the power of 2 and get 5x+1.
\left(16x-12\right)\left(5x+1\right)=\left(6x+6\right)^{2}
Use the distributive property to multiply 4 by 4x-3.
80x^{2}+16x-60x-12=\left(6x+6\right)^{2}
Apply the distributive property by multiplying each term of 16x-12 by each term of 5x+1.
80x^{2}-44x-12=\left(6x+6\right)^{2}
Combine 16x and -60x to get -44x.
80x^{2}-44x-12=36x^{2}+72x+36
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(6x+6\right)^{2}.
80x^{2}-44x-12-36x^{2}=72x+36
Subtract 36x^{2} from both sides.
44x^{2}-44x-12=72x+36
Combine 80x^{2} and -36x^{2} to get 44x^{2}.
44x^{2}-44x-12-72x=36
Subtract 72x from both sides.
44x^{2}-116x-12=36
Combine -44x and -72x to get -116x.
44x^{2}-116x-12-36=0
Subtract 36 from both sides.
44x^{2}-116x-48=0
Subtract 36 from -12 to get -48.
11x^{2}-29x-12=0
Divide both sides by 4.
a+b=-29 ab=11\left(-12\right)=-132
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 11x^{2}+ax+bx-12. To find a and b, set up a system to be solved.
1,-132 2,-66 3,-44 4,-33 6,-22 11,-12
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -132.
1-132=-131 2-66=-64 3-44=-41 4-33=-29 6-22=-16 11-12=-1
Calculate the sum for each pair.
a=-33 b=4
The solution is the pair that gives sum -29.
\left(11x^{2}-33x\right)+\left(4x-12\right)
Rewrite 11x^{2}-29x-12 as \left(11x^{2}-33x\right)+\left(4x-12\right).
11x\left(x-3\right)+4\left(x-3\right)
Factor out 11x in the first and 4 in the second group.
\left(x-3\right)\left(11x+4\right)
Factor out common term x-3 by using distributive property.
x=3 x=-\frac{4}{11}
To find equation solutions, solve x-3=0 and 11x+4=0.
\sqrt{4\left(-\frac{4}{11}\right)-3}+\sqrt{5\left(-\frac{4}{11}\right)+1}=\sqrt{15\left(-\frac{4}{11}\right)+4}
Substitute -\frac{4}{11} for x in the equation \sqrt{4x-3}+\sqrt{5x+1}=\sqrt{15x+4}. The expression \sqrt{4\left(-\frac{4}{11}\right)-3} is undefined because the radicand cannot be negative.
\sqrt{4\times 3-3}+\sqrt{5\times 3+1}=\sqrt{15\times 3+4}
Substitute 3 for x in the equation \sqrt{4x-3}+\sqrt{5x+1}=\sqrt{15x+4}.
7=7
Simplify. The value x=3 satisfies the equation.
x=3
Equation \sqrt{5x+1}+\sqrt{4x-3}=\sqrt{15x+4} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}