Evaluate (complex solution)
\frac{5\sqrt{1722}i}{14}\approx 14.820352801i
Real Part (complex solution)
0
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\sqrt{45-\frac{57\times 65}{14}}
Express \frac{57}{14}\times 65 as a single fraction.
\sqrt{45-\frac{3705}{14}}
Multiply 57 and 65 to get 3705.
\sqrt{\frac{630}{14}-\frac{3705}{14}}
Convert 45 to fraction \frac{630}{14}.
\sqrt{\frac{630-3705}{14}}
Since \frac{630}{14} and \frac{3705}{14} have the same denominator, subtract them by subtracting their numerators.
\sqrt{-\frac{3075}{14}}
Subtract 3705 from 630 to get -3075.
\frac{\sqrt{-3075}}{\sqrt{14}}
Rewrite the square root of the division \sqrt{-\frac{3075}{14}} as the division of square roots \frac{\sqrt{-3075}}{\sqrt{14}}.
\frac{5i\sqrt{123}}{\sqrt{14}}
Factor -3075=\left(5i\right)^{2}\times 123. Rewrite the square root of the product \sqrt{\left(5i\right)^{2}\times 123} as the product of square roots \sqrt{\left(5i\right)^{2}}\sqrt{123}. Take the square root of \left(5i\right)^{2}.
\frac{5i\sqrt{123}\sqrt{14}}{\left(\sqrt{14}\right)^{2}}
Rationalize the denominator of \frac{5i\sqrt{123}}{\sqrt{14}} by multiplying numerator and denominator by \sqrt{14}.
\frac{5i\sqrt{123}\sqrt{14}}{14}
The square of \sqrt{14} is 14.
\frac{5i\sqrt{1722}}{14}
To multiply \sqrt{123} and \sqrt{14}, multiply the numbers under the square root.
\frac{5}{14}i\sqrt{1722}
Divide 5i\sqrt{1722} by 14 to get \frac{5}{14}i\sqrt{1722}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}