Solve for x
x = \frac{6 \sqrt{13}}{13} \approx 1.664100589
Graph
Share
Copied to clipboard
\left(\sqrt{4-x^{2}}\right)^{2}=\left(2-\frac{2}{3}\left(3-x\right)\right)^{2}
Square both sides of the equation.
4-x^{2}=\left(2-\frac{2}{3}\left(3-x\right)\right)^{2}
Calculate \sqrt{4-x^{2}} to the power of 2 and get 4-x^{2}.
4-x^{2}=\left(2-2+\frac{2}{3}x\right)^{2}
Use the distributive property to multiply -\frac{2}{3} by 3-x.
4-x^{2}=\left(\frac{2}{3}x\right)^{2}
Subtract 2 from 2 to get 0.
4-x^{2}=\left(\frac{2}{3}\right)^{2}x^{2}
Expand \left(\frac{2}{3}x\right)^{2}.
4-x^{2}=\frac{4}{9}x^{2}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
4-x^{2}-\frac{4}{9}x^{2}=0
Subtract \frac{4}{9}x^{2} from both sides.
4-\frac{13}{9}x^{2}=0
Combine -x^{2} and -\frac{4}{9}x^{2} to get -\frac{13}{9}x^{2}.
-\frac{13}{9}x^{2}=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-4\left(-\frac{9}{13}\right)
Multiply both sides by -\frac{9}{13}, the reciprocal of -\frac{13}{9}.
x^{2}=\frac{36}{13}
Multiply -4 and -\frac{9}{13} to get \frac{36}{13}.
x=\frac{6\sqrt{13}}{13} x=-\frac{6\sqrt{13}}{13}
Take the square root of both sides of the equation.
\sqrt{4-\left(\frac{6\sqrt{13}}{13}\right)^{2}}=2-\frac{2}{3}\left(3-\frac{6\sqrt{13}}{13}\right)
Substitute \frac{6\sqrt{13}}{13} for x in the equation \sqrt{4-x^{2}}=2-\frac{2}{3}\left(3-x\right).
\frac{4}{13}\times 13^{\frac{1}{2}}=\frac{4}{13}\times 13^{\frac{1}{2}}
Simplify. The value x=\frac{6\sqrt{13}}{13} satisfies the equation.
\sqrt{4-\left(-\frac{6\sqrt{13}}{13}\right)^{2}}=2-\frac{2}{3}\left(3-\left(-\frac{6\sqrt{13}}{13}\right)\right)
Substitute -\frac{6\sqrt{13}}{13} for x in the equation \sqrt{4-x^{2}}=2-\frac{2}{3}\left(3-x\right).
\frac{4}{13}\times 13^{\frac{1}{2}}=-\frac{4}{13}\times 13^{\frac{1}{2}}
Simplify. The value x=-\frac{6\sqrt{13}}{13} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{6\sqrt{13}}{13}
Equation \sqrt{4-x^{2}}=-\frac{2\left(3-x\right)}{3}+2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}