Solve for x
x=2\left(\sqrt{3}+2\right)\approx 7.464101615
Graph
Share
Copied to clipboard
\sqrt{3x}=2+\sqrt{x}
Subtract -\sqrt{x} from both sides of the equation.
\left(\sqrt{3x}\right)^{2}=\left(2+\sqrt{x}\right)^{2}
Square both sides of the equation.
3x=\left(2+\sqrt{x}\right)^{2}
Calculate \sqrt{3x} to the power of 2 and get 3x.
3x=4+4\sqrt{x}+\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{x}\right)^{2}.
3x=4+4\sqrt{x}+x
Calculate \sqrt{x} to the power of 2 and get x.
3x-\left(4+x\right)=4\sqrt{x}
Subtract 4+x from both sides of the equation.
3x-4-x=4\sqrt{x}
To find the opposite of 4+x, find the opposite of each term.
2x-4=4\sqrt{x}
Combine 3x and -x to get 2x.
\left(2x-4\right)^{2}=\left(4\sqrt{x}\right)^{2}
Square both sides of the equation.
4x^{2}-16x+16=\left(4\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-4\right)^{2}.
4x^{2}-16x+16=4^{2}\left(\sqrt{x}\right)^{2}
Expand \left(4\sqrt{x}\right)^{2}.
4x^{2}-16x+16=16\left(\sqrt{x}\right)^{2}
Calculate 4 to the power of 2 and get 16.
4x^{2}-16x+16=16x
Calculate \sqrt{x} to the power of 2 and get x.
4x^{2}-16x+16-16x=0
Subtract 16x from both sides.
4x^{2}-32x+16=0
Combine -16x and -16x to get -32x.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 4\times 16}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -32 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 4\times 16}}{2\times 4}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-16\times 16}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-32\right)±\sqrt{1024-256}}{2\times 4}
Multiply -16 times 16.
x=\frac{-\left(-32\right)±\sqrt{768}}{2\times 4}
Add 1024 to -256.
x=\frac{-\left(-32\right)±16\sqrt{3}}{2\times 4}
Take the square root of 768.
x=\frac{32±16\sqrt{3}}{2\times 4}
The opposite of -32 is 32.
x=\frac{32±16\sqrt{3}}{8}
Multiply 2 times 4.
x=\frac{16\sqrt{3}+32}{8}
Now solve the equation x=\frac{32±16\sqrt{3}}{8} when ± is plus. Add 32 to 16\sqrt{3}.
x=2\sqrt{3}+4
Divide 32+16\sqrt{3} by 8.
x=\frac{32-16\sqrt{3}}{8}
Now solve the equation x=\frac{32±16\sqrt{3}}{8} when ± is minus. Subtract 16\sqrt{3} from 32.
x=4-2\sqrt{3}
Divide 32-16\sqrt{3} by 8.
x=2\sqrt{3}+4 x=4-2\sqrt{3}
The equation is now solved.
\sqrt{3\left(2\sqrt{3}+4\right)}-\sqrt{2\sqrt{3}+4}=2
Substitute 2\sqrt{3}+4 for x in the equation \sqrt{3x}-\sqrt{x}=2.
2=2
Simplify. The value x=2\sqrt{3}+4 satisfies the equation.
\sqrt{3\left(4-2\sqrt{3}\right)}-\sqrt{4-2\sqrt{3}}=2
Substitute 4-2\sqrt{3} for x in the equation \sqrt{3x}-\sqrt{x}=2.
4-2\times 3^{\frac{1}{2}}=2
Simplify. The value x=4-2\sqrt{3} does not satisfy the equation.
\sqrt{3\left(2\sqrt{3}+4\right)}-\sqrt{2\sqrt{3}+4}=2
Substitute 2\sqrt{3}+4 for x in the equation \sqrt{3x}-\sqrt{x}=2.
2=2
Simplify. The value x=2\sqrt{3}+4 satisfies the equation.
x=2\sqrt{3}+4
Equation \sqrt{3x}=\sqrt{x}+2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}