Solve for x
x=2\sqrt{2}\approx 2.828427125
Graph
Share
Copied to clipboard
\left(\sqrt{3+x}\right)^{2}=\left(\frac{1}{2}x+\frac{2}{2}\right)^{2}
Square both sides of the equation.
3+x=\left(\frac{1}{2}x+\frac{2}{2}\right)^{2}
Calculate \sqrt{3+x} to the power of 2 and get 3+x.
3+x=\left(\frac{1}{2}x+1\right)^{2}
Divide 2 by 2 to get 1.
3+x=\frac{1}{4}x^{2}+x+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\frac{1}{2}x+1\right)^{2}.
3+x-\frac{1}{4}x^{2}=x+1
Subtract \frac{1}{4}x^{2} from both sides.
3+x-\frac{1}{4}x^{2}-x=1
Subtract x from both sides.
3-\frac{1}{4}x^{2}=1
Combine x and -x to get 0.
-\frac{1}{4}x^{2}=1-3
Subtract 3 from both sides.
-\frac{1}{4}x^{2}=-2
Subtract 3 from 1 to get -2.
x^{2}=-2\left(-4\right)
Multiply both sides by -4, the reciprocal of -\frac{1}{4}.
x^{2}=8
Multiply -2 and -4 to get 8.
x=2\sqrt{2} x=-2\sqrt{2}
Take the square root of both sides of the equation.
\sqrt{3+2\sqrt{2}}=\frac{1}{2}\times 2\sqrt{2}+\frac{2}{2}
Substitute 2\sqrt{2} for x in the equation \sqrt{3+x}=\frac{1}{2}x+\frac{2}{2}.
2^{\frac{1}{2}}+1=2^{\frac{1}{2}}+1
Simplify. The value x=2\sqrt{2} satisfies the equation.
\sqrt{3-2\sqrt{2}}=\frac{1}{2}\left(-2\sqrt{2}\right)+\frac{2}{2}
Substitute -2\sqrt{2} for x in the equation \sqrt{3+x}=\frac{1}{2}x+\frac{2}{2}.
2^{\frac{1}{2}}-1=-2^{\frac{1}{2}}+1
Simplify. The value x=-2\sqrt{2} does not satisfy the equation because the left and the right hand side have opposite signs.
x=2\sqrt{2}
Equation \sqrt{x+3}=\frac{x}{2}+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}