Evaluate
\frac{3\sqrt{390}}{100}\approx 0.59245253
Share
Copied to clipboard
\sqrt{27\times 13\times 10^{-3}}
Multiply 3 and 9 to get 27.
\sqrt{351\times 10^{-3}}
Multiply 27 and 13 to get 351.
\sqrt{351\times \frac{1}{1000}}
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\sqrt{\frac{351}{1000}}
Multiply 351 and \frac{1}{1000} to get \frac{351}{1000}.
\frac{\sqrt{351}}{\sqrt{1000}}
Rewrite the square root of the division \sqrt{\frac{351}{1000}} as the division of square roots \frac{\sqrt{351}}{\sqrt{1000}}.
\frac{3\sqrt{39}}{\sqrt{1000}}
Factor 351=3^{2}\times 39. Rewrite the square root of the product \sqrt{3^{2}\times 39} as the product of square roots \sqrt{3^{2}}\sqrt{39}. Take the square root of 3^{2}.
\frac{3\sqrt{39}}{10\sqrt{10}}
Factor 1000=10^{2}\times 10. Rewrite the square root of the product \sqrt{10^{2}\times 10} as the product of square roots \sqrt{10^{2}}\sqrt{10}. Take the square root of 10^{2}.
\frac{3\sqrt{39}\sqrt{10}}{10\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{39}}{10\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{3\sqrt{39}\sqrt{10}}{10\times 10}
The square of \sqrt{10} is 10.
\frac{3\sqrt{390}}{10\times 10}
To multiply \sqrt{39} and \sqrt{10}, multiply the numbers under the square root.
\frac{3\sqrt{390}}{100}
Multiply 10 and 10 to get 100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}