Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{3}+\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\sqrt{3}+\frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{3}+\frac{2-\sqrt{3}}{4-3}
Square 2. Square \sqrt{3}.
\sqrt{3}+\frac{2-\sqrt{3}}{1}
Subtract 3 from 4 to get 1.
\sqrt{3}+2-\sqrt{3}
Anything divided by one gives itself.
2
Combine \sqrt{3} and -\sqrt{3} to get 0.