Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{2x-3}=\sqrt{3x-2}-\sqrt{x-1}
Subtract \sqrt{x-1} from both sides of the equation.
\left(\sqrt{2x-3}\right)^{2}=\left(\sqrt{3x-2}-\sqrt{x-1}\right)^{2}
Square both sides of the equation.
2x-3=\left(\sqrt{3x-2}-\sqrt{x-1}\right)^{2}
Calculate \sqrt{2x-3} to the power of 2 and get 2x-3.
2x-3=\left(\sqrt{3x-2}\right)^{2}-2\sqrt{3x-2}\sqrt{x-1}+\left(\sqrt{x-1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3x-2}-\sqrt{x-1}\right)^{2}.
2x-3=3x-2-2\sqrt{3x-2}\sqrt{x-1}+\left(\sqrt{x-1}\right)^{2}
Calculate \sqrt{3x-2} to the power of 2 and get 3x-2.
2x-3=3x-2-2\sqrt{3x-2}\sqrt{x-1}+x-1
Calculate \sqrt{x-1} to the power of 2 and get x-1.
2x-3=4x-2-2\sqrt{3x-2}\sqrt{x-1}-1
Combine 3x and x to get 4x.
2x-3=4x-3-2\sqrt{3x-2}\sqrt{x-1}
Subtract 1 from -2 to get -3.
2x-3-\left(4x-3\right)=-2\sqrt{3x-2}\sqrt{x-1}
Subtract 4x-3 from both sides of the equation.
2x-3-4x+3=-2\sqrt{3x-2}\sqrt{x-1}
To find the opposite of 4x-3, find the opposite of each term.
-2x-3+3=-2\sqrt{3x-2}\sqrt{x-1}
Combine 2x and -4x to get -2x.
-2x=-2\sqrt{3x-2}\sqrt{x-1}
Add -3 and 3 to get 0.
x=\sqrt{3x-2}\sqrt{x-1}
Cancel out -2 on both sides.
x^{2}=\left(\sqrt{3x-2}\sqrt{x-1}\right)^{2}
Square both sides of the equation.
x^{2}=\left(\sqrt{3x-2}\right)^{2}\left(\sqrt{x-1}\right)^{2}
Expand \left(\sqrt{3x-2}\sqrt{x-1}\right)^{2}.
x^{2}=\left(3x-2\right)\left(\sqrt{x-1}\right)^{2}
Calculate \sqrt{3x-2} to the power of 2 and get 3x-2.
x^{2}=\left(3x-2\right)\left(x-1\right)
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x^{2}=3x^{2}-3x-2x+2
Apply the distributive property by multiplying each term of 3x-2 by each term of x-1.
x^{2}=3x^{2}-5x+2
Combine -3x and -2x to get -5x.
x^{2}-3x^{2}=-5x+2
Subtract 3x^{2} from both sides.
-2x^{2}=-5x+2
Combine x^{2} and -3x^{2} to get -2x^{2}.
-2x^{2}+5x=2
Add 5x to both sides.
-2x^{2}+5x-2=0
Subtract 2 from both sides.
a+b=5 ab=-2\left(-2\right)=4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2x^{2}+ax+bx-2. To find a and b, set up a system to be solved.
1,4 2,2
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 4.
1+4=5 2+2=4
Calculate the sum for each pair.
a=4 b=1
The solution is the pair that gives sum 5.
\left(-2x^{2}+4x\right)+\left(x-2\right)
Rewrite -2x^{2}+5x-2 as \left(-2x^{2}+4x\right)+\left(x-2\right).
2x\left(-x+2\right)-\left(-x+2\right)
Factor out 2x in the first and -1 in the second group.
\left(-x+2\right)\left(2x-1\right)
Factor out common term -x+2 by using distributive property.
x=2 x=\frac{1}{2}
To find equation solutions, solve -x+2=0 and 2x-1=0.
\sqrt{2\times \frac{1}{2}-3}+\sqrt{\frac{1}{2}-1}=\sqrt{3\times \frac{1}{2}-2}
Substitute \frac{1}{2} for x in the equation \sqrt{2x-3}+\sqrt{x-1}=\sqrt{3x-2}. The expression \sqrt{2\times \frac{1}{2}-3} is undefined because the radicand cannot be negative.
\sqrt{2\times 2-3}+\sqrt{2-1}=\sqrt{3\times 2-2}
Substitute 2 for x in the equation \sqrt{2x-3}+\sqrt{x-1}=\sqrt{3x-2}.
2=2
Simplify. The value x=2 satisfies the equation.
x=2
Equation \sqrt{2x-3}=\sqrt{3x-2}-\sqrt{x-1} has a unique solution.