Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{2x+5}=5-\sqrt{5x-6}
Subtract \sqrt{5x-6} from both sides of the equation.
\left(\sqrt{2x+5}\right)^{2}=\left(5-\sqrt{5x-6}\right)^{2}
Square both sides of the equation.
2x+5=\left(5-\sqrt{5x-6}\right)^{2}
Calculate \sqrt{2x+5} to the power of 2 and get 2x+5.
2x+5=25-10\sqrt{5x-6}+\left(\sqrt{5x-6}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-\sqrt{5x-6}\right)^{2}.
2x+5=25-10\sqrt{5x-6}+5x-6
Calculate \sqrt{5x-6} to the power of 2 and get 5x-6.
2x+5=19-10\sqrt{5x-6}+5x
Subtract 6 from 25 to get 19.
2x+5-\left(19+5x\right)=-10\sqrt{5x-6}
Subtract 19+5x from both sides of the equation.
2x+5-19-5x=-10\sqrt{5x-6}
To find the opposite of 19+5x, find the opposite of each term.
2x-14-5x=-10\sqrt{5x-6}
Subtract 19 from 5 to get -14.
-3x-14=-10\sqrt{5x-6}
Combine 2x and -5x to get -3x.
\left(-3x-14\right)^{2}=\left(-10\sqrt{5x-6}\right)^{2}
Square both sides of the equation.
9x^{2}+84x+196=\left(-10\sqrt{5x-6}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-3x-14\right)^{2}.
9x^{2}+84x+196=\left(-10\right)^{2}\left(\sqrt{5x-6}\right)^{2}
Expand \left(-10\sqrt{5x-6}\right)^{2}.
9x^{2}+84x+196=100\left(\sqrt{5x-6}\right)^{2}
Calculate -10 to the power of 2 and get 100.
9x^{2}+84x+196=100\left(5x-6\right)
Calculate \sqrt{5x-6} to the power of 2 and get 5x-6.
9x^{2}+84x+196=500x-600
Use the distributive property to multiply 100 by 5x-6.
9x^{2}+84x+196-500x=-600
Subtract 500x from both sides.
9x^{2}-416x+196=-600
Combine 84x and -500x to get -416x.
9x^{2}-416x+196+600=0
Add 600 to both sides.
9x^{2}-416x+796=0
Add 196 and 600 to get 796.
x=\frac{-\left(-416\right)±\sqrt{\left(-416\right)^{2}-4\times 9\times 796}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -416 for b, and 796 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-416\right)±\sqrt{173056-4\times 9\times 796}}{2\times 9}
Square -416.
x=\frac{-\left(-416\right)±\sqrt{173056-36\times 796}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-416\right)±\sqrt{173056-28656}}{2\times 9}
Multiply -36 times 796.
x=\frac{-\left(-416\right)±\sqrt{144400}}{2\times 9}
Add 173056 to -28656.
x=\frac{-\left(-416\right)±380}{2\times 9}
Take the square root of 144400.
x=\frac{416±380}{2\times 9}
The opposite of -416 is 416.
x=\frac{416±380}{18}
Multiply 2 times 9.
x=\frac{796}{18}
Now solve the equation x=\frac{416±380}{18} when ± is plus. Add 416 to 380.
x=\frac{398}{9}
Reduce the fraction \frac{796}{18} to lowest terms by extracting and canceling out 2.
x=\frac{36}{18}
Now solve the equation x=\frac{416±380}{18} when ± is minus. Subtract 380 from 416.
x=2
Divide 36 by 18.
x=\frac{398}{9} x=2
The equation is now solved.
\sqrt{2\times \frac{398}{9}+5}+\sqrt{5\times \frac{398}{9}-6}=5
Substitute \frac{398}{9} for x in the equation \sqrt{2x+5}+\sqrt{5x-6}=5.
\frac{73}{3}=5
Simplify. The value x=\frac{398}{9} does not satisfy the equation.
\sqrt{2\times 2+5}+\sqrt{5\times 2-6}=5
Substitute 2 for x in the equation \sqrt{2x+5}+\sqrt{5x-6}=5.
5=5
Simplify. The value x=2 satisfies the equation.
x=2
Equation \sqrt{2x+5}=-\sqrt{5x-6}+5 has a unique solution.