Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{2x+4}=1+\sqrt{x+9}
Subtract -\sqrt{x+9} from both sides of the equation.
\left(\sqrt{2x+4}\right)^{2}=\left(1+\sqrt{x+9}\right)^{2}
Square both sides of the equation.
2x+4=\left(1+\sqrt{x+9}\right)^{2}
Calculate \sqrt{2x+4} to the power of 2 and get 2x+4.
2x+4=1+2\sqrt{x+9}+\left(\sqrt{x+9}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{x+9}\right)^{2}.
2x+4=1+2\sqrt{x+9}+x+9
Calculate \sqrt{x+9} to the power of 2 and get x+9.
2x+4=10+2\sqrt{x+9}+x
Add 1 and 9 to get 10.
2x+4-\left(10+x\right)=2\sqrt{x+9}
Subtract 10+x from both sides of the equation.
2x+4-10-x=2\sqrt{x+9}
To find the opposite of 10+x, find the opposite of each term.
2x-6-x=2\sqrt{x+9}
Subtract 10 from 4 to get -6.
x-6=2\sqrt{x+9}
Combine 2x and -x to get x.
\left(x-6\right)^{2}=\left(2\sqrt{x+9}\right)^{2}
Square both sides of the equation.
x^{2}-12x+36=\left(2\sqrt{x+9}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
x^{2}-12x+36=2^{2}\left(\sqrt{x+9}\right)^{2}
Expand \left(2\sqrt{x+9}\right)^{2}.
x^{2}-12x+36=4\left(\sqrt{x+9}\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}-12x+36=4\left(x+9\right)
Calculate \sqrt{x+9} to the power of 2 and get x+9.
x^{2}-12x+36=4x+36
Use the distributive property to multiply 4 by x+9.
x^{2}-12x+36-4x=36
Subtract 4x from both sides.
x^{2}-16x+36=36
Combine -12x and -4x to get -16x.
x^{2}-16x+36-36=0
Subtract 36 from both sides.
x^{2}-16x=0
Subtract 36 from 36 to get 0.
x\left(x-16\right)=0
Factor out x.
x=0 x=16
To find equation solutions, solve x=0 and x-16=0.
\sqrt{2\times 0+4}-\sqrt{0+9}=1
Substitute 0 for x in the equation \sqrt{2x+4}-\sqrt{x+9}=1.
-1=1
Simplify. The value x=0 does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{2\times 16+4}-\sqrt{16+9}=1
Substitute 16 for x in the equation \sqrt{2x+4}-\sqrt{x+9}=1.
1=1
Simplify. The value x=16 satisfies the equation.
x=16
Equation \sqrt{2x+4}=\sqrt{x+9}+1 has a unique solution.