Solve for x
x=16
Graph
Share
Copied to clipboard
\sqrt{2x+4}=1+\sqrt{x+9}
Subtract -\sqrt{x+9} from both sides of the equation.
\left(\sqrt{2x+4}\right)^{2}=\left(1+\sqrt{x+9}\right)^{2}
Square both sides of the equation.
2x+4=\left(1+\sqrt{x+9}\right)^{2}
Calculate \sqrt{2x+4} to the power of 2 and get 2x+4.
2x+4=1+2\sqrt{x+9}+\left(\sqrt{x+9}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{x+9}\right)^{2}.
2x+4=1+2\sqrt{x+9}+x+9
Calculate \sqrt{x+9} to the power of 2 and get x+9.
2x+4=10+2\sqrt{x+9}+x
Add 1 and 9 to get 10.
2x+4-\left(10+x\right)=2\sqrt{x+9}
Subtract 10+x from both sides of the equation.
2x+4-10-x=2\sqrt{x+9}
To find the opposite of 10+x, find the opposite of each term.
2x-6-x=2\sqrt{x+9}
Subtract 10 from 4 to get -6.
x-6=2\sqrt{x+9}
Combine 2x and -x to get x.
\left(x-6\right)^{2}=\left(2\sqrt{x+9}\right)^{2}
Square both sides of the equation.
x^{2}-12x+36=\left(2\sqrt{x+9}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
x^{2}-12x+36=2^{2}\left(\sqrt{x+9}\right)^{2}
Expand \left(2\sqrt{x+9}\right)^{2}.
x^{2}-12x+36=4\left(\sqrt{x+9}\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}-12x+36=4\left(x+9\right)
Calculate \sqrt{x+9} to the power of 2 and get x+9.
x^{2}-12x+36=4x+36
Use the distributive property to multiply 4 by x+9.
x^{2}-12x+36-4x=36
Subtract 4x from both sides.
x^{2}-16x+36=36
Combine -12x and -4x to get -16x.
x^{2}-16x+36-36=0
Subtract 36 from both sides.
x^{2}-16x=0
Subtract 36 from 36 to get 0.
x\left(x-16\right)=0
Factor out x.
x=0 x=16
To find equation solutions, solve x=0 and x-16=0.
\sqrt{2\times 0+4}-\sqrt{0+9}=1
Substitute 0 for x in the equation \sqrt{2x+4}-\sqrt{x+9}=1.
-1=1
Simplify. The value x=0 does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{2\times 16+4}-\sqrt{16+9}=1
Substitute 16 for x in the equation \sqrt{2x+4}-\sqrt{x+9}=1.
1=1
Simplify. The value x=16 satisfies the equation.
x=16
Equation \sqrt{2x+4}=\sqrt{x+9}+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}