Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{2x+3x^{2}}\right)^{2}=\left(2x^{2}\right)^{2}
Square both sides of the equation.
2x+3x^{2}=\left(2x^{2}\right)^{2}
Calculate \sqrt{2x+3x^{2}} to the power of 2 and get 2x+3x^{2}.
2x+3x^{2}=2^{2}\left(x^{2}\right)^{2}
Expand \left(2x^{2}\right)^{2}.
2x+3x^{2}=2^{2}x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2x+3x^{2}=4x^{4}
Calculate 2 to the power of 2 and get 4.
2x+3x^{2}-4x^{4}=0
Subtract 4x^{4} from both sides.
-4t^{2}+3t+2=0
Substitute t for x^{2}.
t=\frac{-3±\sqrt{3^{2}-4\left(-4\right)\times 2}}{-4\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -4 for a, 3 for b, and 2 for c in the quadratic formula.
t=\frac{-3±\sqrt{41}}{-8}
Do the calculations.
t=\frac{3-\sqrt{41}}{8} t=\frac{\sqrt{41}+3}{8}
Solve the equation t=\frac{-3±\sqrt{41}}{-8} when ± is plus and when ± is minus.
x=\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2} x=-\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
\sqrt{2\times \frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2}+3\times \left(\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2}\right)^{2}}=2\times \left(\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2}\right)^{2}
Substitute \frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2} for x in the equation \sqrt{2x+3x^{2}}=2x^{2}.
\frac{1}{2}\left(2\times 2^{\frac{1}{2}}\left(41^{\frac{1}{2}}+3\right)^{\frac{1}{2}}+\frac{3}{2}\times 41^{\frac{1}{2}}+\frac{9}{2}\right)^{\frac{1}{2}}=\frac{1}{4}\times 41^{\frac{1}{2}}+\frac{3}{4}
Simplify. The value x=\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2} does not satisfy the equation.
\sqrt{2\left(-\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2}\right)+3\left(-\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2}\right)^{2}}=2\left(-\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2}\right)^{2}
Substitute -\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2} for x in the equation \sqrt{2x+3x^{2}}=2x^{2}.
\frac{1}{2}\left(-2\times 2^{\frac{1}{2}}\left(41^{\frac{1}{2}}+3\right)^{\frac{1}{2}}+\frac{3}{2}\times 41^{\frac{1}{2}}+\frac{9}{2}\right)^{\frac{1}{2}}=\frac{1}{4}\times 41^{\frac{1}{2}}+\frac{3}{4}
Simplify. The value x=-\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2} does not satisfy the equation.
x\in \emptyset
Equation \sqrt{3x^{2}+2x}=2x^{2} has no solutions.