Solve for x
x = \frac{\sqrt[3]{\sqrt{3} + 2} + \sqrt[3]{2 - \sqrt{3}}}{2} \approx 1.097911673
x=0
Graph
Share
Copied to clipboard
\left(\sqrt{2x+3x^{2}}\right)^{2}=\left(2x^{2}\right)^{2}
Square both sides of the equation.
2x+3x^{2}=\left(2x^{2}\right)^{2}
Calculate \sqrt{2x+3x^{2}} to the power of 2 and get 2x+3x^{2}.
2x+3x^{2}=2^{2}\left(x^{2}\right)^{2}
Expand \left(2x^{2}\right)^{2}.
2x+3x^{2}=2^{2}x^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2x+3x^{2}=4x^{4}
Calculate 2 to the power of 2 and get 4.
2x+3x^{2}-4x^{4}=0
Subtract 4x^{4} from both sides.
-4t^{2}+3t+2=0
Substitute t for x^{2}.
t=\frac{-3±\sqrt{3^{2}-4\left(-4\right)\times 2}}{-4\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -4 for a, 3 for b, and 2 for c in the quadratic formula.
t=\frac{-3±\sqrt{41}}{-8}
Do the calculations.
t=\frac{3-\sqrt{41}}{8} t=\frac{\sqrt{41}+3}{8}
Solve the equation t=\frac{-3±\sqrt{41}}{-8} when ± is plus and when ± is minus.
x=\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2} x=-\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
\sqrt{2\times \frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2}+3\times \left(\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2}\right)^{2}}=2\times \left(\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2}\right)^{2}
Substitute \frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2} for x in the equation \sqrt{2x+3x^{2}}=2x^{2}.
\frac{1}{2}\left(2\times 2^{\frac{1}{2}}\left(41^{\frac{1}{2}}+3\right)^{\frac{1}{2}}+\frac{3}{2}\times 41^{\frac{1}{2}}+\frac{9}{2}\right)^{\frac{1}{2}}=\frac{1}{4}\times 41^{\frac{1}{2}}+\frac{3}{4}
Simplify. The value x=\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2} does not satisfy the equation.
\sqrt{2\left(-\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2}\right)+3\left(-\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2}\right)^{2}}=2\left(-\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2}\right)^{2}
Substitute -\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2} for x in the equation \sqrt{2x+3x^{2}}=2x^{2}.
\frac{1}{2}\left(-2\times 2^{\frac{1}{2}}\left(41^{\frac{1}{2}}+3\right)^{\frac{1}{2}}+\frac{3}{2}\times 41^{\frac{1}{2}}+\frac{9}{2}\right)^{\frac{1}{2}}=\frac{1}{4}\times 41^{\frac{1}{2}}+\frac{3}{4}
Simplify. The value x=-\frac{\sqrt{\frac{\sqrt{41}+3}{2}}}{2} does not satisfy the equation.
x\in \emptyset
Equation \sqrt{3x^{2}+2x}=2x^{2} has no solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}