Solve for x
x = \frac{64 - \sqrt{127}}{49} \approx 1.076134129
Graph
Share
Copied to clipboard
\sqrt{2x}=9-7x
Subtract 7x from both sides of the equation.
\left(\sqrt{2x}\right)^{2}=\left(9-7x\right)^{2}
Square both sides of the equation.
2x=\left(9-7x\right)^{2}
Calculate \sqrt{2x} to the power of 2 and get 2x.
2x=81-126x+49x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9-7x\right)^{2}.
2x-81=-126x+49x^{2}
Subtract 81 from both sides.
2x-81+126x=49x^{2}
Add 126x to both sides.
128x-81=49x^{2}
Combine 2x and 126x to get 128x.
128x-81-49x^{2}=0
Subtract 49x^{2} from both sides.
-49x^{2}+128x-81=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-128±\sqrt{128^{2}-4\left(-49\right)\left(-81\right)}}{2\left(-49\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -49 for a, 128 for b, and -81 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-128±\sqrt{16384-4\left(-49\right)\left(-81\right)}}{2\left(-49\right)}
Square 128.
x=\frac{-128±\sqrt{16384+196\left(-81\right)}}{2\left(-49\right)}
Multiply -4 times -49.
x=\frac{-128±\sqrt{16384-15876}}{2\left(-49\right)}
Multiply 196 times -81.
x=\frac{-128±\sqrt{508}}{2\left(-49\right)}
Add 16384 to -15876.
x=\frac{-128±2\sqrt{127}}{2\left(-49\right)}
Take the square root of 508.
x=\frac{-128±2\sqrt{127}}{-98}
Multiply 2 times -49.
x=\frac{2\sqrt{127}-128}{-98}
Now solve the equation x=\frac{-128±2\sqrt{127}}{-98} when ± is plus. Add -128 to 2\sqrt{127}.
x=\frac{64-\sqrt{127}}{49}
Divide -128+2\sqrt{127} by -98.
x=\frac{-2\sqrt{127}-128}{-98}
Now solve the equation x=\frac{-128±2\sqrt{127}}{-98} when ± is minus. Subtract 2\sqrt{127} from -128.
x=\frac{\sqrt{127}+64}{49}
Divide -128-2\sqrt{127} by -98.
x=\frac{64-\sqrt{127}}{49} x=\frac{\sqrt{127}+64}{49}
The equation is now solved.
\sqrt{2\times \frac{64-\sqrt{127}}{49}}+7\times \frac{64-\sqrt{127}}{49}=9
Substitute \frac{64-\sqrt{127}}{49} for x in the equation \sqrt{2x}+7x=9.
9=9
Simplify. The value x=\frac{64-\sqrt{127}}{49} satisfies the equation.
\sqrt{2\times \frac{\sqrt{127}+64}{49}}+7\times \frac{\sqrt{127}+64}{49}=9
Substitute \frac{\sqrt{127}+64}{49} for x in the equation \sqrt{2x}+7x=9.
\frac{65}{7}+\frac{2}{7}\times 127^{\frac{1}{2}}=9
Simplify. The value x=\frac{\sqrt{127}+64}{49} does not satisfy the equation.
x=\frac{64-\sqrt{127}}{49}
Equation \sqrt{2x}=9-7x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}