Evaluate
\frac{\sqrt{70}}{3}\approx 2.788866755
Share
Copied to clipboard
\frac{\sqrt{\frac{4+1}{2}}}{3}\sqrt{28}
Multiply 2 and 2 to get 4.
\frac{\sqrt{\frac{5}{2}}}{3}\sqrt{28}
Add 4 and 1 to get 5.
\frac{\frac{\sqrt{5}}{\sqrt{2}}}{3}\sqrt{28}
Rewrite the square root of the division \sqrt{\frac{5}{2}} as the division of square roots \frac{\sqrt{5}}{\sqrt{2}}.
\frac{\frac{\sqrt{5}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}{3}\sqrt{28}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{\sqrt{5}\sqrt{2}}{2}}{3}\sqrt{28}
The square of \sqrt{2} is 2.
\frac{\frac{\sqrt{10}}{2}}{3}\sqrt{28}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{10}}{2\times 3}\sqrt{28}
Express \frac{\frac{\sqrt{10}}{2}}{3} as a single fraction.
\frac{\sqrt{10}}{6}\sqrt{28}
Multiply 2 and 3 to get 6.
\frac{\sqrt{10}}{6}\times 2\sqrt{7}
Factor 28=2^{2}\times 7. Rewrite the square root of the product \sqrt{2^{2}\times 7} as the product of square roots \sqrt{2^{2}}\sqrt{7}. Take the square root of 2^{2}.
\frac{\sqrt{10}}{3}\sqrt{7}
Cancel out 6, the greatest common factor in 2 and 6.
\frac{\sqrt{10}\sqrt{7}}{3}
Express \frac{\sqrt{10}}{3}\sqrt{7} as a single fraction.
\frac{\sqrt{70}}{3}
To multiply \sqrt{10} and \sqrt{7}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}