Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{2}+2-\frac{\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1}{\sqrt{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{2}+1\right)^{2}.
\sqrt{2}+2-\frac{2+2\sqrt{2}+1}{\sqrt{2}}
The square of \sqrt{2} is 2.
\sqrt{2}+2-\frac{3+2\sqrt{2}}{\sqrt{2}}
Add 2 and 1 to get 3.
\sqrt{2}+2-\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{3+2\sqrt{2}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\sqrt{2}+2-\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{2\left(\sqrt{2}+2\right)}{2}-\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{2}+2 times \frac{2}{2}.
\frac{2\left(\sqrt{2}+2\right)-\left(3+2\sqrt{2}\right)\sqrt{2}}{2}
Since \frac{2\left(\sqrt{2}+2\right)}{2} and \frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2\sqrt{2}+4-3\sqrt{2}-4}{2}
Do the multiplications in 2\left(\sqrt{2}+2\right)-\left(3+2\sqrt{2}\right)\sqrt{2}.
\frac{-\sqrt{2}}{2}
Do the calculations in 2\sqrt{2}+4-3\sqrt{2}-4.