Evaluate
-\frac{\sqrt{2}}{2}\approx -0.707106781
Share
Copied to clipboard
\sqrt{2}+2-\frac{\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1}{\sqrt{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{2}+1\right)^{2}.
\sqrt{2}+2-\frac{2+2\sqrt{2}+1}{\sqrt{2}}
The square of \sqrt{2} is 2.
\sqrt{2}+2-\frac{3+2\sqrt{2}}{\sqrt{2}}
Add 2 and 1 to get 3.
\sqrt{2}+2-\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{3+2\sqrt{2}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\sqrt{2}+2-\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{2\left(\sqrt{2}+2\right)}{2}-\frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{2}+2 times \frac{2}{2}.
\frac{2\left(\sqrt{2}+2\right)-\left(3+2\sqrt{2}\right)\sqrt{2}}{2}
Since \frac{2\left(\sqrt{2}+2\right)}{2} and \frac{\left(3+2\sqrt{2}\right)\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2\sqrt{2}+4-3\sqrt{2}-4}{2}
Do the multiplications in 2\left(\sqrt{2}+2\right)-\left(3+2\sqrt{2}\right)\sqrt{2}.
\frac{-\sqrt{2}}{2}
Do the calculations in 2\sqrt{2}+4-3\sqrt{2}-4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}