Evaluate
\frac{1}{2}=0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
\frac{\sqrt{2}}{4\sqrt{3}}\sqrt{6}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{\sqrt{2}\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}\sqrt{6}
Rationalize the denominator of \frac{\sqrt{2}}{4\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{2}\sqrt{3}}{4\times 3}\sqrt{6}
The square of \sqrt{3} is 3.
\frac{\sqrt{6}}{4\times 3}\sqrt{6}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{6}}{12}\sqrt{6}
Multiply 4 and 3 to get 12.
\frac{\sqrt{6}\sqrt{6}}{12}
Express \frac{\sqrt{6}}{12}\sqrt{6} as a single fraction.
\frac{6}{12}
Multiply \sqrt{6} and \sqrt{6} to get 6.
\frac{1}{2}
Reduce the fraction \frac{6}{12} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}