Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{16+2x}\left(-4\right)\right)^{2}=\left(2x\right)^{2}
Square both sides of the equation.
\left(\sqrt{16+2x}\right)^{2}\left(-4\right)^{2}=\left(2x\right)^{2}
Expand \left(\sqrt{16+2x}\left(-4\right)\right)^{2}.
\left(16+2x\right)\left(-4\right)^{2}=\left(2x\right)^{2}
Calculate \sqrt{16+2x} to the power of 2 and get 16+2x.
\left(16+2x\right)\times 16=\left(2x\right)^{2}
Calculate -4 to the power of 2 and get 16.
256+32x=\left(2x\right)^{2}
Use the distributive property to multiply 16+2x by 16.
256+32x=2^{2}x^{2}
Expand \left(2x\right)^{2}.
256+32x=4x^{2}
Calculate 2 to the power of 2 and get 4.
256+32x-4x^{2}=0
Subtract 4x^{2} from both sides.
-4x^{2}+32x+256=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-32±\sqrt{32^{2}-4\left(-4\right)\times 256}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 32 for b, and 256 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\left(-4\right)\times 256}}{2\left(-4\right)}
Square 32.
x=\frac{-32±\sqrt{1024+16\times 256}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-32±\sqrt{1024+4096}}{2\left(-4\right)}
Multiply 16 times 256.
x=\frac{-32±\sqrt{5120}}{2\left(-4\right)}
Add 1024 to 4096.
x=\frac{-32±32\sqrt{5}}{2\left(-4\right)}
Take the square root of 5120.
x=\frac{-32±32\sqrt{5}}{-8}
Multiply 2 times -4.
x=\frac{32\sqrt{5}-32}{-8}
Now solve the equation x=\frac{-32±32\sqrt{5}}{-8} when ± is plus. Add -32 to 32\sqrt{5}.
x=4-4\sqrt{5}
Divide -32+32\sqrt{5} by -8.
x=\frac{-32\sqrt{5}-32}{-8}
Now solve the equation x=\frac{-32±32\sqrt{5}}{-8} when ± is minus. Subtract 32\sqrt{5} from -32.
x=4\sqrt{5}+4
Divide -32-32\sqrt{5} by -8.
x=4-4\sqrt{5} x=4\sqrt{5}+4
The equation is now solved.
\sqrt{16+2\left(4-4\sqrt{5}\right)}\left(-4\right)=2\left(4-4\sqrt{5}\right)
Substitute 4-4\sqrt{5} for x in the equation \sqrt{16+2x}\left(-4\right)=2x.
-8\times 5^{\frac{1}{2}}+8=8-8\times 5^{\frac{1}{2}}
Simplify. The value x=4-4\sqrt{5} satisfies the equation.
\sqrt{16+2\left(4\sqrt{5}+4\right)}\left(-4\right)=2\left(4\sqrt{5}+4\right)
Substitute 4\sqrt{5}+4 for x in the equation \sqrt{16+2x}\left(-4\right)=2x.
-8\times 5^{\frac{1}{2}}-8=8\times 5^{\frac{1}{2}}+8
Simplify. The value x=4\sqrt{5}+4 does not satisfy the equation because the left and the right hand side have opposite signs.
x=4-4\sqrt{5}
Equation -4\sqrt{2x+16}=2x has a unique solution.