Solve for x
x=4-4\sqrt{5}\approx -4.94427191
Graph
Share
Copied to clipboard
\left(\sqrt{16+2x}\left(-4\right)\right)^{2}=\left(2x\right)^{2}
Square both sides of the equation.
\left(\sqrt{16+2x}\right)^{2}\left(-4\right)^{2}=\left(2x\right)^{2}
Expand \left(\sqrt{16+2x}\left(-4\right)\right)^{2}.
\left(16+2x\right)\left(-4\right)^{2}=\left(2x\right)^{2}
Calculate \sqrt{16+2x} to the power of 2 and get 16+2x.
\left(16+2x\right)\times 16=\left(2x\right)^{2}
Calculate -4 to the power of 2 and get 16.
256+32x=\left(2x\right)^{2}
Use the distributive property to multiply 16+2x by 16.
256+32x=2^{2}x^{2}
Expand \left(2x\right)^{2}.
256+32x=4x^{2}
Calculate 2 to the power of 2 and get 4.
256+32x-4x^{2}=0
Subtract 4x^{2} from both sides.
-4x^{2}+32x+256=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-32±\sqrt{32^{2}-4\left(-4\right)\times 256}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 32 for b, and 256 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±\sqrt{1024-4\left(-4\right)\times 256}}{2\left(-4\right)}
Square 32.
x=\frac{-32±\sqrt{1024+16\times 256}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-32±\sqrt{1024+4096}}{2\left(-4\right)}
Multiply 16 times 256.
x=\frac{-32±\sqrt{5120}}{2\left(-4\right)}
Add 1024 to 4096.
x=\frac{-32±32\sqrt{5}}{2\left(-4\right)}
Take the square root of 5120.
x=\frac{-32±32\sqrt{5}}{-8}
Multiply 2 times -4.
x=\frac{32\sqrt{5}-32}{-8}
Now solve the equation x=\frac{-32±32\sqrt{5}}{-8} when ± is plus. Add -32 to 32\sqrt{5}.
x=4-4\sqrt{5}
Divide -32+32\sqrt{5} by -8.
x=\frac{-32\sqrt{5}-32}{-8}
Now solve the equation x=\frac{-32±32\sqrt{5}}{-8} when ± is minus. Subtract 32\sqrt{5} from -32.
x=4\sqrt{5}+4
Divide -32-32\sqrt{5} by -8.
x=4-4\sqrt{5} x=4\sqrt{5}+4
The equation is now solved.
\sqrt{16+2\left(4-4\sqrt{5}\right)}\left(-4\right)=2\left(4-4\sqrt{5}\right)
Substitute 4-4\sqrt{5} for x in the equation \sqrt{16+2x}\left(-4\right)=2x.
-8\times 5^{\frac{1}{2}}+8=8-8\times 5^{\frac{1}{2}}
Simplify. The value x=4-4\sqrt{5} satisfies the equation.
\sqrt{16+2\left(4\sqrt{5}+4\right)}\left(-4\right)=2\left(4\sqrt{5}+4\right)
Substitute 4\sqrt{5}+4 for x in the equation \sqrt{16+2x}\left(-4\right)=2x.
-8\times 5^{\frac{1}{2}}-8=8\times 5^{\frac{1}{2}}+8
Simplify. The value x=4\sqrt{5}+4 does not satisfy the equation because the left and the right hand side have opposite signs.
x=4-4\sqrt{5}
Equation -4\sqrt{2x+16}=2x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}