Solve for n
n=12
Share
Copied to clipboard
\left(\sqrt{15-n}\right)^{2}=\left(\sqrt{3n-33}\right)^{2}
Square both sides of the equation.
15-n=\left(\sqrt{3n-33}\right)^{2}
Calculate \sqrt{15-n} to the power of 2 and get 15-n.
15-n=3n-33
Calculate \sqrt{3n-33} to the power of 2 and get 3n-33.
15-n-3n=-33
Subtract 3n from both sides.
15-4n=-33
Combine -n and -3n to get -4n.
-4n=-33-15
Subtract 15 from both sides.
-4n=-48
Subtract 15 from -33 to get -48.
n=\frac{-48}{-4}
Divide both sides by -4.
n=12
Divide -48 by -4 to get 12.
\sqrt{15-12}=\sqrt{3\times 12-33}
Substitute 12 for n in the equation \sqrt{15-n}=\sqrt{3n-33}.
3^{\frac{1}{2}}=3^{\frac{1}{2}}
Simplify. The value n=12 satisfies the equation.
n=12
Equation \sqrt{15-n}=\sqrt{3n-33} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}