Evaluate
2\sqrt{3}+13\sqrt{7}\approx 37.858868659
Share
Copied to clipboard
2\sqrt{3}-\sqrt{63}+\frac{224}{\sqrt{28}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
2\sqrt{3}-3\sqrt{7}+\frac{224}{\sqrt{28}}
Factor 63=3^{2}\times 7. Rewrite the square root of the product \sqrt{3^{2}\times 7} as the product of square roots \sqrt{3^{2}}\sqrt{7}. Take the square root of 3^{2}.
2\sqrt{3}-3\sqrt{7}+\frac{224}{2\sqrt{7}}
Factor 28=2^{2}\times 7. Rewrite the square root of the product \sqrt{2^{2}\times 7} as the product of square roots \sqrt{2^{2}}\sqrt{7}. Take the square root of 2^{2}.
2\sqrt{3}-3\sqrt{7}+\frac{224\sqrt{7}}{2\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{224}{2\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
2\sqrt{3}-3\sqrt{7}+\frac{224\sqrt{7}}{2\times 7}
The square of \sqrt{7} is 7.
2\sqrt{3}-3\sqrt{7}+16\sqrt{7}
Cancel out 2\times 7 in both numerator and denominator.
2\sqrt{3}+13\sqrt{7}
Combine -3\sqrt{7} and 16\sqrt{7} to get 13\sqrt{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}