Evaluate
\frac{13}{12}\approx 1.083333333
Factor
\frac{13}{2 ^ {2} \cdot 3} = 1\frac{1}{12} = 1.0833333333333333
Quiz
Arithmetic
5 problems similar to:
\sqrt{ 1+ \frac{ 1 }{ { 3 }^{ 2 } } + \frac{ 1 }{ { 4 }^{ 2 } } }
Share
Copied to clipboard
\sqrt{1+\frac{1}{9}+\frac{1}{4^{2}}}
Calculate 3 to the power of 2 and get 9.
\sqrt{\frac{9}{9}+\frac{1}{9}+\frac{1}{4^{2}}}
Convert 1 to fraction \frac{9}{9}.
\sqrt{\frac{9+1}{9}+\frac{1}{4^{2}}}
Since \frac{9}{9} and \frac{1}{9} have the same denominator, add them by adding their numerators.
\sqrt{\frac{10}{9}+\frac{1}{4^{2}}}
Add 9 and 1 to get 10.
\sqrt{\frac{10}{9}+\frac{1}{16}}
Calculate 4 to the power of 2 and get 16.
\sqrt{\frac{160}{144}+\frac{9}{144}}
Least common multiple of 9 and 16 is 144. Convert \frac{10}{9} and \frac{1}{16} to fractions with denominator 144.
\sqrt{\frac{160+9}{144}}
Since \frac{160}{144} and \frac{9}{144} have the same denominator, add them by adding their numerators.
\sqrt{\frac{169}{144}}
Add 160 and 9 to get 169.
\frac{13}{12}
Rewrite the square root of the division \frac{169}{144} as the division of square roots \frac{\sqrt{169}}{\sqrt{144}}. Take the square root of both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}