Solve for x
x=8
x=6
Graph
Share
Copied to clipboard
\left(\sqrt{-48+14x}\right)^{2}=x^{2}
Square both sides of the equation.
-48+14x=x^{2}
Calculate \sqrt{-48+14x} to the power of 2 and get -48+14x.
-48+14x-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+14x-48=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=14 ab=-\left(-48\right)=48
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-48. To find a and b, set up a system to be solved.
1,48 2,24 3,16 4,12 6,8
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 48.
1+48=49 2+24=26 3+16=19 4+12=16 6+8=14
Calculate the sum for each pair.
a=8 b=6
The solution is the pair that gives sum 14.
\left(-x^{2}+8x\right)+\left(6x-48\right)
Rewrite -x^{2}+14x-48 as \left(-x^{2}+8x\right)+\left(6x-48\right).
-x\left(x-8\right)+6\left(x-8\right)
Factor out -x in the first and 6 in the second group.
\left(x-8\right)\left(-x+6\right)
Factor out common term x-8 by using distributive property.
x=8 x=6
To find equation solutions, solve x-8=0 and -x+6=0.
\sqrt{-48+14\times 8}=8
Substitute 8 for x in the equation \sqrt{-48+14x}=x.
8=8
Simplify. The value x=8 satisfies the equation.
\sqrt{-48+14\times 6}=6
Substitute 6 for x in the equation \sqrt{-48+14x}=x.
6=6
Simplify. The value x=6 satisfies the equation.
x=8 x=6
List all solutions of \sqrt{14x-48}=x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}