Evaluate
\frac{2\sqrt{6985}}{127}\approx 1.316162401
Share
Copied to clipboard
\sqrt{\frac{220}{127}}
Expand \frac{22}{12.7} by multiplying both numerator and the denominator by 10.
\frac{\sqrt{220}}{\sqrt{127}}
Rewrite the square root of the division \sqrt{\frac{220}{127}} as the division of square roots \frac{\sqrt{220}}{\sqrt{127}}.
\frac{2\sqrt{55}}{\sqrt{127}}
Factor 220=2^{2}\times 55. Rewrite the square root of the product \sqrt{2^{2}\times 55} as the product of square roots \sqrt{2^{2}}\sqrt{55}. Take the square root of 2^{2}.
\frac{2\sqrt{55}\sqrt{127}}{\left(\sqrt{127}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{55}}{\sqrt{127}} by multiplying numerator and denominator by \sqrt{127}.
\frac{2\sqrt{55}\sqrt{127}}{127}
The square of \sqrt{127} is 127.
\frac{2\sqrt{6985}}{127}
To multiply \sqrt{55} and \sqrt{127}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}