\sqrt{ ( { \left( \frac{ 975 }{ 2 } \right) }^{ 2 } } + { \left( \frac{ 375 \sqrt{ 3 } }{ 2 } \right) }^{ 2 } )
Evaluate
75\sqrt{61}\approx 585.768725693
Share
Copied to clipboard
\sqrt{\frac{950625}{4}+\left(\frac{375\sqrt{3}}{2}\right)^{2}}
Calculate \frac{975}{2} to the power of 2 and get \frac{950625}{4}.
\sqrt{\frac{950625}{4}+\frac{\left(375\sqrt{3}\right)^{2}}{2^{2}}}
To raise \frac{375\sqrt{3}}{2} to a power, raise both numerator and denominator to the power and then divide.
\sqrt{\frac{950625}{4}+\frac{\left(375\sqrt{3}\right)^{2}}{4}}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\sqrt{\frac{950625+\left(375\sqrt{3}\right)^{2}}{4}}
Since \frac{950625}{4} and \frac{\left(375\sqrt{3}\right)^{2}}{4} have the same denominator, add them by adding their numerators.
\sqrt{\frac{950625+375^{2}\left(\sqrt{3}\right)^{2}}{4}}
Expand \left(375\sqrt{3}\right)^{2}.
\sqrt{\frac{950625+140625\left(\sqrt{3}\right)^{2}}{4}}
Calculate 375 to the power of 2 and get 140625.
\sqrt{\frac{950625+140625\times 3}{4}}
The square of \sqrt{3} is 3.
\sqrt{\frac{950625+421875}{4}}
Multiply 140625 and 3 to get 421875.
\sqrt{\frac{1372500}{4}}
Add 950625 and 421875 to get 1372500.
\sqrt{343125}
Divide 1372500 by 4 to get 343125.
75\sqrt{61}
Factor 343125=75^{2}\times 61. Rewrite the square root of the product \sqrt{75^{2}\times 61} as the product of square roots \sqrt{75^{2}}\sqrt{61}. Take the square root of 75^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}