Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x^{4}+8x^{3}+2x^{2}-1}\right)^{2}=\left(\sqrt{x^{4}+2x^{2}}\right)^{2}
Square both sides of the equation.
x^{4}+8x^{3}+2x^{2}-1=\left(\sqrt{x^{4}+2x^{2}}\right)^{2}
Calculate \sqrt{x^{4}+8x^{3}+2x^{2}-1} to the power of 2 and get x^{4}+8x^{3}+2x^{2}-1.
x^{4}+8x^{3}+2x^{2}-1=x^{4}+2x^{2}
Calculate \sqrt{x^{4}+2x^{2}} to the power of 2 and get x^{4}+2x^{2}.
x^{4}+8x^{3}+2x^{2}-1-x^{4}=2x^{2}
Subtract x^{4} from both sides.
8x^{3}+2x^{2}-1=2x^{2}
Combine x^{4} and -x^{4} to get 0.
8x^{3}+2x^{2}-1-2x^{2}=0
Subtract 2x^{2} from both sides.
8x^{3}-1=0
Combine 2x^{2} and -2x^{2} to get 0.
±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -1 and q divides the leading coefficient 8. List all candidates \frac{p}{q}.
x=\frac{1}{2}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
4x^{2}+2x+1=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 8x^{3}-1 by 2\left(x-\frac{1}{2}\right)=2x-1 to get 4x^{2}+2x+1. Solve the equation where the result equals to 0.
x=\frac{-2±\sqrt{2^{2}-4\times 4\times 1}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, 2 for b, and 1 for c in the quadratic formula.
x=\frac{-2±\sqrt{-12}}{8}
Do the calculations.
x=\frac{-\sqrt{3}i-1}{4} x=\frac{-1+\sqrt{3}i}{4}
Solve the equation 4x^{2}+2x+1=0 when ± is plus and when ± is minus.
x=\frac{1}{2} x=\frac{-\sqrt{3}i-1}{4} x=\frac{-1+\sqrt{3}i}{4}
List all found solutions.
\sqrt{\left(\frac{1}{2}\right)^{4}+8\times \left(\frac{1}{2}\right)^{3}+2\times \left(\frac{1}{2}\right)^{2}-1}=\sqrt{\left(\frac{1}{2}\right)^{4}+2\times \left(\frac{1}{2}\right)^{2}}
Substitute \frac{1}{2} for x in the equation \sqrt{x^{4}+8x^{3}+2x^{2}-1}=\sqrt{x^{4}+2x^{2}}.
\frac{3}{4}=\frac{3}{4}
Simplify. The value x=\frac{1}{2} satisfies the equation.
\sqrt{\left(\frac{-\sqrt{3}i-1}{4}\right)^{4}+8\times \left(\frac{-\sqrt{3}i-1}{4}\right)^{3}+2\times \left(\frac{-\sqrt{3}i-1}{4}\right)^{2}-1}=\sqrt{\left(\frac{-\sqrt{3}i-1}{4}\right)^{4}+2\times \left(\frac{-\sqrt{3}i-1}{4}\right)^{2}}
Substitute \frac{-\sqrt{3}i-1}{4} for x in the equation \sqrt{x^{4}+8x^{3}+2x^{2}-1}=\sqrt{x^{4}+2x^{2}}.
\frac{1}{16}\left(-72+56i\times 3^{\frac{1}{2}}\right)^{\frac{1}{2}}=\frac{1}{16}\left(-72+56i\times 3^{\frac{1}{2}}\right)^{\frac{1}{2}}
Simplify. The value x=\frac{-\sqrt{3}i-1}{4} satisfies the equation.
\sqrt{\left(\frac{-1+\sqrt{3}i}{4}\right)^{4}+8\times \left(\frac{-1+\sqrt{3}i}{4}\right)^{3}+2\times \left(\frac{-1+\sqrt{3}i}{4}\right)^{2}-1}=\sqrt{\left(\frac{-1+\sqrt{3}i}{4}\right)^{4}+2\times \left(\frac{-1+\sqrt{3}i}{4}\right)^{2}}
Substitute \frac{-1+\sqrt{3}i}{4} for x in the equation \sqrt{x^{4}+8x^{3}+2x^{2}-1}=\sqrt{x^{4}+2x^{2}}.
\frac{1}{16}\left(-72-56i\times 3^{\frac{1}{2}}\right)^{\frac{1}{2}}=\frac{1}{16}\left(-72-56i\times 3^{\frac{1}{2}}\right)^{\frac{1}{2}}
Simplify. The value x=\frac{-1+\sqrt{3}i}{4} satisfies the equation.
x=\frac{1}{2} x=\frac{-\sqrt{3}i-1}{4} x=\frac{-1+\sqrt{3}i}{4}
List all solutions of \sqrt{x^{4}+8x^{3}+2x^{2}-1}=\sqrt{x^{4}+2x^{2}}.
\left(\sqrt{x^{4}+8x^{3}+2x^{2}-1}\right)^{2}=\left(\sqrt{x^{4}+2x^{2}}\right)^{2}
Square both sides of the equation.
x^{4}+8x^{3}+2x^{2}-1=\left(\sqrt{x^{4}+2x^{2}}\right)^{2}
Calculate \sqrt{x^{4}+8x^{3}+2x^{2}-1} to the power of 2 and get x^{4}+8x^{3}+2x^{2}-1.
x^{4}+8x^{3}+2x^{2}-1=x^{4}+2x^{2}
Calculate \sqrt{x^{4}+2x^{2}} to the power of 2 and get x^{4}+2x^{2}.
x^{4}+8x^{3}+2x^{2}-1-x^{4}=2x^{2}
Subtract x^{4} from both sides.
8x^{3}+2x^{2}-1=2x^{2}
Combine x^{4} and -x^{4} to get 0.
8x^{3}+2x^{2}-1-2x^{2}=0
Subtract 2x^{2} from both sides.
8x^{3}-1=0
Combine 2x^{2} and -2x^{2} to get 0.
±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -1 and q divides the leading coefficient 8. List all candidates \frac{p}{q}.
x=\frac{1}{2}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
4x^{2}+2x+1=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 8x^{3}-1 by 2\left(x-\frac{1}{2}\right)=2x-1 to get 4x^{2}+2x+1. Solve the equation where the result equals to 0.
x=\frac{-2±\sqrt{2^{2}-4\times 4\times 1}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, 2 for b, and 1 for c in the quadratic formula.
x=\frac{-2±\sqrt{-12}}{8}
Do the calculations.
x\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
x=\frac{1}{2}
List all found solutions.
\sqrt{\left(\frac{1}{2}\right)^{4}+8\times \left(\frac{1}{2}\right)^{3}+2\times \left(\frac{1}{2}\right)^{2}-1}=\sqrt{\left(\frac{1}{2}\right)^{4}+2\times \left(\frac{1}{2}\right)^{2}}
Substitute \frac{1}{2} for x in the equation \sqrt{x^{4}+8x^{3}+2x^{2}-1}=\sqrt{x^{4}+2x^{2}}.
\frac{3}{4}=\frac{3}{4}
Simplify. The value x=\frac{1}{2} satisfies the equation.
x=\frac{1}{2}
Equation \sqrt{x^{4}+8x^{3}+2x^{2}-1}=\sqrt{x^{4}+2x^{2}} has a unique solution.