Solve for x
x = \frac{16}{7} = 2\frac{2}{7} \approx 2.285714286
Graph
Share
Copied to clipboard
\left(\sqrt{x^{2}-14x+113-9^{2}}\right)^{2}=x^{2}
Square both sides of the equation.
\left(\sqrt{x^{2}-14x+113-81}\right)^{2}=x^{2}
Calculate 9 to the power of 2 and get 81.
\left(\sqrt{x^{2}-14x+32}\right)^{2}=x^{2}
Subtract 81 from 113 to get 32.
x^{2}-14x+32=x^{2}
Calculate \sqrt{x^{2}-14x+32} to the power of 2 and get x^{2}-14x+32.
x^{2}-14x+32-x^{2}=0
Subtract x^{2} from both sides.
-14x+32=0
Combine x^{2} and -x^{2} to get 0.
-14x=-32
Subtract 32 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-32}{-14}
Divide both sides by -14.
x=\frac{16}{7}
Reduce the fraction \frac{-32}{-14} to lowest terms by extracting and canceling out -2.
\sqrt{\left(\frac{16}{7}\right)^{2}-14\times \frac{16}{7}+113-9^{2}}=\frac{16}{7}
Substitute \frac{16}{7} for x in the equation \sqrt{x^{2}-14x+113-9^{2}}=x.
\frac{16}{7}=\frac{16}{7}
Simplify. The value x=\frac{16}{7} satisfies the equation.
x=\frac{16}{7}
Equation \sqrt{x^{2}-14x+113-81}=x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}