Solve for x (complex solution)
x=-5
x=1
Solve for x
x=1
Graph
Share
Copied to clipboard
\left(\sqrt{x^{2}+5x-1}\right)^{2}=\left(\sqrt{x+4}\right)^{2}
Square both sides of the equation.
x^{2}+5x-1=\left(\sqrt{x+4}\right)^{2}
Calculate \sqrt{x^{2}+5x-1} to the power of 2 and get x^{2}+5x-1.
x^{2}+5x-1=x+4
Calculate \sqrt{x+4} to the power of 2 and get x+4.
x^{2}+5x-1-x=4
Subtract x from both sides.
x^{2}+4x-1=4
Combine 5x and -x to get 4x.
x^{2}+4x-1-4=0
Subtract 4 from both sides.
x^{2}+4x-5=0
Subtract 4 from -1 to get -5.
a+b=4 ab=-5
To solve the equation, factor x^{2}+4x-5 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
a=-1 b=5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. The only such pair is the system solution.
\left(x-1\right)\left(x+5\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=1 x=-5
To find equation solutions, solve x-1=0 and x+5=0.
\sqrt{1^{2}+5\times 1-1}=\sqrt{1+4}
Substitute 1 for x in the equation \sqrt{x^{2}+5x-1}=\sqrt{x+4}.
5^{\frac{1}{2}}=5^{\frac{1}{2}}
Simplify. The value x=1 satisfies the equation.
\sqrt{\left(-5\right)^{2}+5\left(-5\right)-1}=\sqrt{-5+4}
Substitute -5 for x in the equation \sqrt{x^{2}+5x-1}=\sqrt{x+4}.
i=i
Simplify. The value x=-5 satisfies the equation.
x=1 x=-5
List all solutions of \sqrt{x^{2}+5x-1}=\sqrt{x+4}.
\left(\sqrt{x^{2}+5x-1}\right)^{2}=\left(\sqrt{x+4}\right)^{2}
Square both sides of the equation.
x^{2}+5x-1=\left(\sqrt{x+4}\right)^{2}
Calculate \sqrt{x^{2}+5x-1} to the power of 2 and get x^{2}+5x-1.
x^{2}+5x-1=x+4
Calculate \sqrt{x+4} to the power of 2 and get x+4.
x^{2}+5x-1-x=4
Subtract x from both sides.
x^{2}+4x-1=4
Combine 5x and -x to get 4x.
x^{2}+4x-1-4=0
Subtract 4 from both sides.
x^{2}+4x-5=0
Subtract 4 from -1 to get -5.
a+b=4 ab=-5
To solve the equation, factor x^{2}+4x-5 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
a=-1 b=5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. The only such pair is the system solution.
\left(x-1\right)\left(x+5\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=1 x=-5
To find equation solutions, solve x-1=0 and x+5=0.
\sqrt{1^{2}+5\times 1-1}=\sqrt{1+4}
Substitute 1 for x in the equation \sqrt{x^{2}+5x-1}=\sqrt{x+4}.
5^{\frac{1}{2}}=5^{\frac{1}{2}}
Simplify. The value x=1 satisfies the equation.
\sqrt{\left(-5\right)^{2}+5\left(-5\right)-1}=\sqrt{-5+4}
Substitute -5 for x in the equation \sqrt{x^{2}+5x-1}=\sqrt{x+4}. The expression \sqrt{\left(-5\right)^{2}+5\left(-5\right)-1} is undefined because the radicand cannot be negative.
x=1
Equation \sqrt{x^{2}+5x-1}=\sqrt{x+4} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}