Solve for x
x=\frac{y-3}{2}
Solve for y
y=2x+3
Graph
Share
Copied to clipboard
\left(\sqrt{x^{2}+\left(y+2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x+4\right)^{2}+y^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x^{2}+y^{2}+4y+4}\right)^{2}=\left(\sqrt{\left(x+4\right)^{2}+y^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+2\right)^{2}.
x^{2}+y^{2}+4y+4=\left(\sqrt{\left(x+4\right)^{2}+y^{2}}\right)^{2}
Calculate \sqrt{x^{2}+y^{2}+4y+4} to the power of 2 and get x^{2}+y^{2}+4y+4.
x^{2}+y^{2}+4y+4=\left(\sqrt{x^{2}+8x+16+y^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+y^{2}+4y+4=x^{2}+8x+16+y^{2}
Calculate \sqrt{x^{2}+8x+16+y^{2}} to the power of 2 and get x^{2}+8x+16+y^{2}.
x^{2}+y^{2}+4y+4-x^{2}=8x+16+y^{2}
Subtract x^{2} from both sides.
y^{2}+4y+4=8x+16+y^{2}
Combine x^{2} and -x^{2} to get 0.
8x+16+y^{2}=y^{2}+4y+4
Swap sides so that all variable terms are on the left hand side.
8x+y^{2}=y^{2}+4y+4-16
Subtract 16 from both sides.
8x+y^{2}=y^{2}+4y-12
Subtract 16 from 4 to get -12.
8x=y^{2}+4y-12-y^{2}
Subtract y^{2} from both sides.
8x=4y-12
Combine y^{2} and -y^{2} to get 0.
\frac{8x}{8}=\frac{4y-12}{8}
Divide both sides by 8.
x=\frac{4y-12}{8}
Dividing by 8 undoes the multiplication by 8.
x=\frac{y-3}{2}
Divide -12+4y by 8.
\sqrt{\left(\frac{y-3}{2}\right)^{2}+\left(y+2\right)^{2}}=\sqrt{\left(\frac{y-3}{2}+4\right)^{2}+y^{2}}
Substitute \frac{y-3}{2} for x in the equation \sqrt{x^{2}+\left(y+2\right)^{2}}=\sqrt{\left(x+4\right)^{2}+y^{2}}.
\frac{1}{2}\left(25+10y+5y^{2}\right)^{\frac{1}{2}}=\frac{1}{2}\left(\left(y+5\right)^{2}+4y^{2}\right)^{\frac{1}{2}}
Simplify. The value x=\frac{y-3}{2} satisfies the equation.
x=\frac{y-3}{2}
Equation \sqrt{\left(y+2\right)^{2}+x^{2}}=\sqrt{\left(x+4\right)^{2}+y^{2}} has a unique solution.
\left(\sqrt{x^{2}+\left(y+2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x+4\right)^{2}+y^{2}}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x^{2}+y^{2}+4y+4}\right)^{2}=\left(\sqrt{\left(x+4\right)^{2}+y^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+2\right)^{2}.
x^{2}+y^{2}+4y+4=\left(\sqrt{\left(x+4\right)^{2}+y^{2}}\right)^{2}
Calculate \sqrt{x^{2}+y^{2}+4y+4} to the power of 2 and get x^{2}+y^{2}+4y+4.
x^{2}+y^{2}+4y+4=\left(\sqrt{x^{2}+8x+16+y^{2}}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
x^{2}+y^{2}+4y+4=x^{2}+8x+16+y^{2}
Calculate \sqrt{x^{2}+8x+16+y^{2}} to the power of 2 and get x^{2}+8x+16+y^{2}.
x^{2}+y^{2}+4y+4-y^{2}=x^{2}+8x+16
Subtract y^{2} from both sides.
x^{2}+4y+4=x^{2}+8x+16
Combine y^{2} and -y^{2} to get 0.
4y+4=x^{2}+8x+16-x^{2}
Subtract x^{2} from both sides.
4y+4=8x+16
Combine x^{2} and -x^{2} to get 0.
4y=8x+16-4
Subtract 4 from both sides.
4y=8x+12
Subtract 4 from 16 to get 12.
\frac{4y}{4}=\frac{8x+12}{4}
Divide both sides by 4.
y=\frac{8x+12}{4}
Dividing by 4 undoes the multiplication by 4.
y=2x+3
Divide 8x+12 by 4.
\sqrt{x^{2}+\left(2x+3+2\right)^{2}}=\sqrt{\left(x+4\right)^{2}+\left(2x+3\right)^{2}}
Substitute 2x+3 for y in the equation \sqrt{x^{2}+\left(y+2\right)^{2}}=\sqrt{\left(x+4\right)^{2}+y^{2}}.
\left(x^{2}+\left(2x+5\right)^{2}\right)^{\frac{1}{2}}=\left(25+20x+5x^{2}\right)^{\frac{1}{2}}
Simplify. The value y=2x+3 satisfies the equation.
y=2x+3
Equation \sqrt{\left(y+2\right)^{2}+x^{2}}=\sqrt{\left(x+4\right)^{2}+y^{2}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}